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Synthetic cathinones are stimulant drugs of abuse that act at monoamine transporters 

e.g. the dopamine transporter (DAT) as releasing agents or as reuptake inhibitors. More 

than >150 new synthetic cathinones have emerged on the clandestine market and have 

attracted considerable attention from the medical and law enforcement communities. 
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threo-Methylphenidate (tMP) is an FDA approved drug for the treatment of ADHD and 

narcolepsy, which also acts as a DAT reuptake inhibitor and is widely abused. tMP and 

synthetic cathinones share some structural similarities and extensive structure-activity 

relationship (SAR) studies on tMP have been conducted. However, much less is known 

about the SAR of synthetic cathinones, and the available MP literature might assist in 

understanding it.  The main focus of this research was to compare SAR between 

methylphenidate-cathinone hybrids and available methylphenidate SAR in order to 

identify some guiding principles that might allow us to predict their abuse potential and 

to identify which cathinones should be targeted for more extensive evaluation.  

 

In the present study, we evaluated eight 2-benzoylpiperidine analogs and a descarbonyl 

analog to determine if tMP SAR can be applied to cathinone SAR. We conducted 

molecular modeling and docking studies and predicted the order of potency to be tMP > 

2-benzoylpiperidine > 2-benzylpiperidine based on the number of hydrogen bonds. The 

synthesized analogs were evaluated in a competition assay using live-cell imaging 

against APP+ in HEK293 cells stably expressing hDAT. All compounds were found to be 

DAT reuptake inhibitors and, as the modeling studies predicted, the order of potency in 

our functional studies was also found to be tMP > 2-benzoylpiperidine > 2-

benzylpiperidine.  A significant correlation was obtained between the potency of the 

benzoylpiperidines and tMP binding data (r = 0.91) suggesting that the SAR of tMP 

analogs might be applicable to the synthetic cathinones as DAT reuptake inhibitors.  
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I. Introduction 
 
 
 
Synthetic cathinones represent a novel class of drugs of abuse which are stimulants in 

nature.1 They first appeared on the clandestine market in 2008 and, since then, >150 

synthetic cathinone analogs have been identified and they have drawn worldwide 

attention.1,2 Synthetic cathinones are chemically related to cathinone (1), which is a 

naturally occurring stimulant of Catha edulis (khat plant) identified in the 19th century.3 

Due to their stimulant effects, synthetic cathinones are used as an alternative to widely 

abused substances such as amphetamine (2) and cocaine (4). Although they are known 

to act at the monoamine transporters as releasers or reuptake inhibitors, very little is 

known about their pharmacokinetic and pharmacodynamic profiles.1 Early cathinones 

were found to act as releasing agents at the monoamine transporters, however, cathinone 

analogs bearing a tertiary amine or a bulky secondary amine and/or extended a-side 

chain (e.g. a-PVP) act as reuptake inhibitors at the dopamine transporter (DAT) and 

norepinephrine transporter (NET).2   

 

Methylphenidate (MP) is an FDA-approved drug commonly prescribed to treat attention 

deficit hyperactivity disorder (ADHD) in children and narcolepsy in adults.4 MP is a 

recognized  stimulant and has a mechanism of action similar to that of cocaine (4). Due 
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to the presence of two chiral centers, MP has four isomers and it was identified that threo-

methylphenidate (tMP) is the active isomer.5 tMP acts as a reuptake inhibitor at DAT and 

NET, however, similar to cocaine (4), it does not have any effect at the serotonin 

transporter (SERT).6,7 The structure-activity relationships (SARs) of MP (70) as a DAT 

reuptake inhibitor have been widely studied.8,9 With respect to the ester group at the b-

position, it was found that the methyl ester can be replaced with other b-substituents such 

as hydroxylamine, amide, and methoxymethyl, however the methyl ester was found to be 

optimal for the DAT binding affinity.8  

 

For the current study, we designed a novel cathinone analog (hybrid between MP and 

cathinone), where the a-side chain of a-PVP is ligated to the terminal amine to resemble 

the piperidine ring of methylphenidate, and replacing the methyl ester of MP with a 

carbonyl group to resemble cathinone. In preliminary studies, previously done in our 

laboratory, the hybrid analog was found to act as a DAT reuptake inhibitor and this 

prompted our current study. We designed and synthesized eight hybrid analogs with 

different aryl substituents and a descarbonyl analog to determine the importance of the 

carbonyl oxygen atom. We evaluated the analogs for their functional activity in APP+ 

uptake and intracellular Ca2+ determination assays.  

 

Much is known about the SAR of MP and very little is known about the SAR of synthetic 

cathinones. Therefore, the current study focuses on conducting parallel SAR studies 

between MP and hybrid analogs and would help answering whether or not MP SAR can 

be applied to synthetic cathinones. If so, it would help understand the SAR of synthetic 
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cathinones by synthesizing a minimum number of analogs, which would save us time and 

resources. It would also help us predict and assist in the identification and potential 

scheduling of novel synthetic cathinones that are yet to be prepared or that might 

eventually find their way on the “street”.  
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II. Background 
 
 
 
A. The Worldwide Drug Abuse Problem  

According to the recent World Drug Report in 2016, approximately 275 million people 

worldwide aged 15 to 64 years (5.6% of the global population) used licit and/or illicit drugs 

at least once.10 There has been a steady rise in the number of people using drugs and it 

has increased by 20 million people from 2015 to 2016. The concerning fact is that one in 

nine people who use drugs have a drug-use problem or are dependent on drugs and/or 

require treatment. This accounts for 30.5 million people worldwide (0.62% of global 

population).10  

 

New psychoactive substances (NPS) are a complex class of drugs, most of which are not 

currently covered under international drug controls. They consist of a broad range of drug 

classes including synthetic cannabinoids, synthetic cathinones, opioids, stimulants and 

benzodiazepines.11 Every year, NPS have been added to the illicit drug market. From 

2009 to 2017 a total of 803 NPS have been reported by 111 countries and territories.12 

The number of NPS available on the market are on a steady rise and they are marketed 

in many different ways and their pattern of emergence differs from countries and 

regions.13 NPS pose a significant threat as their effects on the human body and their 
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toxicological data are often unavailable. This results in additional challenges for 

identification, treatment, and scheduling purposes.13 

 

By the end of 2017, among all the NPS reported to the United Nations Office of Drug and 

Crime (UNODC), synthetic cannabinoids form the largest class (251 substances), which 

is followed by “other substances” (155 substances), synthetic cathinones (148 

substances) and phenethylamines (136 substances).12,13 Not all the NPS reported stay 

on the market for a long time. Seventy two NPS were reported for the first time in 2016 

which is fewer compared to NPS reported in 2015 (137 substances).13 About 70 of the 

130 NPS which were reported by the UNODC in 2009 have continued to appear on the 

market every year and many of them are now placed under international control.13 On the 

contrary, 200 NPS reported between 2009 and 2014 disappeared from the reports of 

2015 and 2016.13 

 

B. Synthetic Cathinones 

Synthetic cathinones represent a novel class of drugs of abuse that have drawn 

worldwide attention over the last decade. The first emergence of synthetic cathinones in 

Europe was in 2008 and has since become a new class of stimulants.1 Synthetic 

cathinones are chemically related to cathinone (1, Figure 1), which is a naturally occurring 

stimulant of the khat plant identified in the 19th century.3 Cathinones belong to the 

phenylalkylamine (PAA) class of compounds and are the b-keto analogs of amphetamine 

(AMPH; 2, Figure 1).  

 



www.manaraa.com

   

 

 6 

Synthetic cathinones are often used as an alternative to widely abused and controlled 

drugs such as MDMA (3), AMPH (2), and cocaine (4) because of their stimulant effects 

(Figure 1). Very little is known about the pharmacokinetic and pharmacodynamic profiles 

of synthetic cathinones, although they are known to act at the monoamine transporters, 

as releasers or reuptake inhibitors, like AMPH and cocaine.1 

 

                                                

  

 
Figure 1. Structures of cathinone (1) and the widely abused drugs amphetamine (AMPH, 
2), MDMA (3) and cocaine (4).  
 

According to the EMCDDA, the majority of the synthetic cathinones appearing in Europe 

are reported to be synthesized mainly in China and, to a lesser extent, India.1 In the last 

decade there has been a shift in the pattern of distribution, sale, and marketing strategies 

of these illicit drugs from street-level drug dealers to a more widespread and readily 

available virtual markets on the Internet.14 Online retailers use the Internet to advertise 

synthetic cathinones and other NPS by giving them catchy names such as “meow meow”, 

“ivory wavy”, “vanilla sky”. They also provide ambiguous descriptions and are commonly 

sold as research chemicals, plant food or bath salts with a warning stating “not for human 
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consumption”.14 The so-called “darknet” also plays an important role in anonymous online 

markets for the purchase of synthetic cathinones and other NPS.11,14 

 

According to the EMCDDA, synthetic cathinones are the second largest group of new 

substances monitored. Of the synthetic cathinones, 12 were detected for the first time in 

2017.11 In 2016, synthetic cathinones were the second most frequently seized NPS. They 

accounted for one-third of the total number of seizures, with over 23,000 seizures (Figure 

2). Synthetic cathinones were the most seized NPS by quantity in 2016, amounting to 

nearly 1.9 tons.11 

 

 
Figure 2. Number of seizures of synthetic cathinones over the years.11 
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C. Cathinone 

1. Origins and History 

Cathinone is a naturally occurring compound present in the shrub Catha edulis.3,15 The 

general name used for the shrub is khat (also spelled as qat, kat, cat or qhat), although it 

has different names in different regions where it is cultivated.15 It is called ‘tchat’ by 

Amharas, ‘Jimma’ by Gallas, and in Kenya, it is known as ‘miraa’.16 Other names include 

“African salad”, “Abyssinian Tea”, “Bushman’s tea” and “Flower of Paradise”.15,16 Khat is 

majorly cultivated in Ethiopia and Yemen for a very long time and its cultivation has spread 

to East Africa, South Africa, and Madagascar.15,16 There have been reports of khat 

growing in the far west in Turkistan, Afghanistan and northern Hejaz (Saudi Arabia).15,17  

 

The origin of the khat plant is under debate. The most ancient mention of a drug, which 

might have been khat, comes from Egypt.18 From the available linguistic evidence, 

Cotterville-Gorandet theorized that the plant which was forbidden in the Temple of Philae 

was khat as reported by Kennedy.18 More factual evidence of the origins of khat are the 

Arabic sources which suggest that khat was used as a medicinal plant in Turkestan and 

Afghanistan in the 11th century.18 However, there is no mention of khat being used for 

pleasure or as a recreational drug.18 

 

The most debated issue about khat is whether it originated in Yemen and spread to 

Ethiopia or vice versa. The first evidence of khat being used as a recreational drug and 

its origin is in the chronicle “wonder and deeds”  of the Christian Ethiopian King, Amda 

Seyon I, reigning from 1314-1344, who fought against the Muslim King, Sabr al-Din who 
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boastfully said ‘As for Mardi its capital, I will make it mine and I will plant khat there 

because the Muslims like it.’16,18 Most historians believe khat to be of Ethiopian origin and 

imported into Yemen but some still have an opposing view.18 The cultivation and use of 

khat in Ethiopia and South-Western Arabia is thought to be earlier than that of coffee.16 

 

Khat belongs to the Celastraceae family which includes 60-70 genera and 850-900 

species.16 It was first described by the Swedish botanist Peter Forskal in 1762 who gave 

khat the name Catha edulis. 15,16 The “edulis” in its name signifies that the plant is edible.19 

It is an evergreen tree and has a slender bole with white bark and has serrated leaves. In 

Yemen, the khat tree grows from 1 to 10 m in height, whereas in Ethiopian highlands, due 

to an abundance of rain, it can reach up to 20 m.15,18,20 There are many different types of 

khat identified based on the area and ecology they grow in. In Yemen alone, 44 different 

types of khat exist and differ in the proportion of active ingredient and alkaloids.18,19 It is 

rarely affected by diseases and if taken care, it can live up to 100 years.15,18 Khat is a 

high-income crop and is a major source of income for Ethiopia’s export revenues.15  

 

2. Khat chewing habit  

Legends in Ethiopia have it that the first use of khat was by a Yemeni herder named 

Awzulkernayien.20 He noticed the effects of the khat leaves on his goats and then tried it 

himself.15,20 The leaves were chewed by farmers, laborers, and students to reduce fatigue 

and keep alert.15 It is usually used in social gatherings in Yemen, called majlis al-qat, the 

matka or the maqayyal.18 The guest usually consumes 100-200 g of leaves.15 The effects 
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of khat experienced by the chewers are divided into desirable (experienced during the 

first few hours) and non-desirable (experienced at the end of khat-chewing session).15,18  

 

The desirable effects are associated with euphoria, alertness, increased ability to 

concentrate, friendliness, and this state is referred to as kayf.15 This is followed by the 

phase of sulimania, in which the chewers detach from the surroundings and often engage 

in deep thinking.15,21 Men are the main consumer of khat and it is considered to be a male 

habit, but over 50% of women in Yemen chew khat on a regular basis.18 Women have an  

elaborate form of khat-chewing session called tafrita, which is held less frequently.18 

However, khat chewing is only limited to old and married women and it is unacceptable 

for young and unmarried women to chew khat. 22 

 

3. Active constituents of khat  

It was thought that, as its sister plant coffee, khat also contained caffeine.18 However, this 

theory was debunked in 1887 when Flückiger and Gerock found no traces of caffeine in 

their studies as reported by Kennedy.18 Early investigations found an active stimulant 

alkaloid and named it katine and later changed it to cathine.18 Mosso in 1891 separated 

a basic extract and named it ‘celastrina’ as reported by Alles16 and Kennedy.18 He found 

that injecting celastrina into isolated frog hearts had a stimulant action. He also found 

injecting it directly in frogs resulted in dilation of the pupil, increased motor and respiratory 

activity followed by loss of coordination and tremors, convulsions, and finally respiratory 

arrest as reported by Alles et al.16 In 1901, Beitter isolated the basic extract that he was 

able to crystallize,23 however it was not for next 20 years that Wolfes (1930) extracted 
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and characterized the active compound as (+)norpseudoephedrine and was identified as 

‘cathine’ (5, Figure 3).24 

  

 

 

 

 

Figure 3. Structure of 1S,2S (+)norpseudoephedrine (cathine, 5) and its isomer 1R, 2S 
(-)norephedrine (6). 
 

Another investigator, Von Brucke, was not convinced that cathine (5) in such a small 

amount would be responsible for the effect it has on khat chewers, which made 

investigators believe that there might be other stimulant components in the plant as 

reported by Kennedy.18 This suspicion was cleared in 1958 when Paris and Moyse 

showed that removal of cathine (5) from the khat tincture was still as active.25 Friebel and 

Brilla in 1963 isolated the other alkaloid as an oxalate salt from the fresh plant and found 

that it had locomotor effects on mice greater than that of cathine (5).26 Cais and co-

workers27 in 1964 isolated a substance and called it cathedine D and with further analysis 

they were able to determine the complete structures of cathedine A, B, C and D. The work 

of another team at the United Nations Narcotics Laboratory analyzed the data further and 

identified a phenylalkylamine, S(-)a-aminopropiophenone, and was named cathinone 

(1)28 and its configuration was confirmed by comparing it with synthetic cathinone.29 (-) 

Cathinone (S(-)1, Figure 4) was found to be the most active stimulant component of khat. 
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Only the S(-) enantiomer of cathinone is found in the khat plant and it has the same 

absolute configuration as (+)AMPH (S(+)2, Figure 4).30 The (-)cathinone (S(-)1) was 

found in young leaves which accounted for 70% of the phenylalkylamines present.28 This 

study also concluded that (-)cathinone (S(-)1) is a biosynthetic precursor which converts 

to cathine (5) via enzymatic reduction as the leaves age.28 

 

 

Figure 4. Structures of the optical isomers of cathinone (1) and AMPH (2). 

 

Apart from alkaloids (phenylalkylamine and cathedulins), flavonoids, sterols, terpenes, 

volatile aromatic compounds, and vitamins such as ascorbic acid, niacin, riboflavin and 

thiamine are also found in leaves and roots of khat plant.19,31 

 

4. Neuropharmacological effects of khat 

Due to its structural similarity to AMPH (2), it was thought that cathinone (1) might have 

AMPH-like effects and this has been reviewed by Kalix 1985.21 
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a. Somatic effects 

Cardiovascular effects of (-)cathinone (S(-)1) were examined in isolated guinea pig atria 

and it showed to have positive inotropic and chronotropic effects.32 The effect of (-

)cathinone (S(-)1) was found to be twice that of (+)cathine (5) and (+)AMPH (S(+)2).32 In 

another study conducted by Kohli et al.,33 it was found that both (-)cathinone (S(-)1) and 

AMPH (2) produce an identical dose-related increase in heart rate, blood pressure in 

anaesthetized dogs.  

 

A number of studies were carried out in order to investigate the analgesic properties of (-

)cathinone (S(-)1) since AMPH (2) demonstrates analgesic effects.21 The analgesic 

properties of (-)cathinone S(-) 1 were tested in three models.34 In a tail-flick test, a single 

intraperitoneal (i.p.) administration of 2.5 mg/kg of (-)cathinone (S(-)1) in rats resulted in 

an increase in reaction time which lasted for 48 h. This increase in the reaction time was 

dose-dependent and with a dose of 10 mg/kg, the latency of tail-flick was more than the 

control values until six days after the administration of (-)cathinone (S(-)1).34 The 

antinociceptive property of (-)cathinone (S(-)1) was tested in mice using a hot-plate test. 

With doses of 10, 20 and 40 mg/kg the antinociceptive effect was maximal at 15 min and 

lasted for approximately 30 min.34 Lastly, a dose-dependent analgesia was also seen in 

a writhing test, where 10 mg/kg of (-)cathinone (S(-)1) reduced the number of  writhings 

induced by i.p. administration of acetic acid and was completely blocked with 20 mg/kg 

of (-)cathinone (S(-)1) administration.34 
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b. Behavioral Effects 

i. Locomotor stimulation  

An early investigation by Yanagita et al.32 showed that subcutaneous (s.c.) administration 

of (-)cathinone (S(-)1)  significantly increased the locomotor activity of rats. Both (-

)cathinone (S(-)1) and AMPH (2) were found to be equipotent in their stimulatory 

activities. In a study conducted by Glennon and Showalter,35 in mice (-)cathinone (S(-)1)  

was found to be slightly more potent than (+)cathinone (R(+)1)  and twice as potent as 

racemic cathinone (1) in stimulating locomotor activity. However, it was found to be 7-fold 

less potent compared to (+)AMPH (S(+)2).35 Another study in 1982 also showed similar 

results where (-)cathinone (S(-)1) was found to be 4-fold less potent than (+)AMPH 

(S(+)2)  in locomotor stimulation.36 

 

In order to examine whether (-)cathinone (S(-)1) produces locomotor stimulation through 

the activation of dopamine (DA) receptors, like AMPH (2), its effect was tested in mice 

pretreated with DA antagonists such as haloperidol, spiroperidol, and pimozide.36 It was 

found that at the concentration appropriate for DA antagonism, the above mentioned DA 

antagonists completely blocked the locomotor effects of (-)cathinone (S(-)1) similar to 

(+)AMPH (S(+)2). These studies indicated that the locomotor effects of (-)cathinone (S(-

)1) and (+)AMPH (S(+)2) were comparable and involved the activation of postsynaptic 

DA receptors.36 
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ii. Stereotyped behavior  

The general profile of the stereotyped behavior produced by cathinone (1) was found to 

be very similar to AMPH (2). Valterio and Kalix36 found that i.p. administration of 11 mg/kg 

of (-)cathinone (S(-)1) induced stereotyped behavior in mice, this effect was also seen in 

rabbits after intravenous (i.v.) administration of 24 mg/kg of (-)cathinone (S(-)1).37 The 

behavior produced by injection of the DA agonist apomorphine (5 mg/kg) was different 

from that induced by cathinone (1), cathine (5), and AMPH (2) with less verticalization 

and rapid head movements.38 As seen with (+)AMPH (S(+)2), pretreatment of animals 

with the catecholamine synthesis blocker a-methylparatyrosine or the DA receptor 

antagonist haloperidol  either completely abolished or significantly reduced the induction 

of stereotyped behavior by (-)cathinone (S(-)1)  and (+)cathine (5).38 

 

iii. Anorectic effects  

Khat leaves are often chewed to suppress hunger and this anorectic effect has been 

demonstrated in several animal models such as rhesus monkeys,39 rats40 and pregnant 

guinea pigs.41 It has been reported that intracerebroventricular injection of (-)cathinone 

(S(-)1) or (+)cathine (5) in rats significantly inhibited food intake to a greater extent than 

(+)AMPH (S(+)2).42 Zelger and Carlini40 reported that, i.p. administration of racemic 

cathinone (1) in rats resulted in decreased food intake and chronic administration led to 

loss in body weight. The order of potency in this study was found to be (+)AMPH (S(+)2) 

> cathinone (1) > (+)cathine (5). The anorexic effect of cathinone was much shorter, and 

tolerance was developed within a week and the weight reducing effect disappeared in 4 
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weeks, in contrast to AMPH (2) where tolerance developed in 2 weeks and its effect was 

seen for 7 weeks.40 

 

iv. Drug discrimination studies 

Drug discrimination studies not only help investigate the effects of the training drug, but 

also its mechanism of action.43 A study conducted by Glennon et al.,44 in rats trained to 

discriminate racemic cathinone from vehicle,  (-)cathinone (S(-)1) was found to be 3-fold 

more potent than (+)cathinone (R(+)1), and 7-fold more potent than cathine (5). In another 

study, cathinone (1) trained rats showed generalization when they were given stimulants 

such as AMPH (2), cocaine (4), and methamphetamine45 but did not show generalization 

with non-stimulants such as opioids, benzodiazepines, fenfluramine, and haloperidol.46 

Also, in a two-lever operant procedures where animals were trained to discriminate either 

(+)AMPH (S(+)2) or DOM (7, Figure 5), cathinone (1) did not show any DOM-like 

hallucinogenic effects, which indicated that cathinone (1) is not a hallucinogen.47 

 

 

 

 

 

 

 

Figure 5. Structure of the hallucinogen DOM (7). 
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v. Self administration  

In a study on rhesus monkeys that were previously trained to lever-press for cocaine (4) 

injection, the monkeys continued to press the lever even when the training drug was 

replaced with (-)cathinone (S(-)1). The reinforcing effects of (-)cathinone (S(-)1)  were 

found to be greater than (+)AMPH.48 In another study, where the monkeys were given a 

drug-drug choice by lever pressing, the reinforcing effects of  racemic cathinone (1) and 

cocaine (4) were found to be equal.49 A similar pattern was observed in rhesus monkeys 

trained to self-administer cocaine intravenously in a progressive ratio test.50 In this test, a 

breaking point of the animal is obtained and the fixed-ratio requirement for the next dose 

is increased i.e., the animal has to work more for the drug. The final ratio obtained was 

similar for (-)cathinone (S(-)1) and AMPH (2) and roughly half for cocaine (4) in 

monkeys.32 

 

vi. Conditioned place preference 

Conditioned place preference is used to assess the rewarding and motivating nature of 

drugs of abuse.43 Calcagnetti et al.51 showed that intracerebroventricular injection of 16 

or 32 µg of racemic cathinone (1) in rats, when confined to the non-preferred side of the 

place-preference apparatus, significantly increased the time they spent in the non-

preferred side. Same results were not obtained with a lower dose (8 µg).51 This suggested 

that dopamine played a significant role in this reward behavior and was supported by a 

previous study where rats when pre-treated with the DA release inhibitor CGS 10746B 

(15 µg/rat)  failed to show conditioned place preference with cathinone (1).52 
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c. Cellular effects  

i. Dopaminergic effects  

Since cathinone closely resembled (+)AMPH (S(+)2) in its somatic and behavioral effects, 

it was of interest to determine whether its effects were due to the release of DA similar to 

(+)AMPH, or if it acted as a dopamine transporter (DAT) reuptake blocker such as cocaine 

(4).   

 

The effect of (-)cathinone (S(-)1) on the increase in radioactivity from isolated rabbit 

caudate nucleus prelabeled with [3H]DA was examined.53 It was found that superfusion 

of the tissue with (-)cathinone (S(-)1) caused a rapid increase in radioactivity and the 

amplitude was comparable to that produced by the same concentration of (+)AMPH 

(S(+)2), however (+)cathine (5) had no effect.53 A similar study was conducted later by 

Zelger and Carlini,54 where they showed that in rat striatal slices prelabeled with [3H]DA, 

racemic cathinone (1) was about two-thirds as effective as (+)AMPH (S(+)2)  in increasing 

radioactivity at 5  µM concentration, whereas at 50 µM both racemic cathinone (1) and 

(+)AMPH (S(+)2) were found to be equipotent.  

 

ii. Serotonergic effects  

AMPH (2) has been known to cause release of serotonin (5-HT) in a dose dependent 

manner and therefore it was thought that cathinone might also have a similar effect.55 (-

)Cathinone (S(-)1) was examined for its ability to release radioactivity from rat striatal 

tissue prelabeled with [3H]5-HT. It was observed that in order to produce an effect similar 

to (+)AMPH (S(+)2), a three times higher concentration of (-)cathinone (S(-)1) was 
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required.56 In another study conducted by Glennon and Liebowitz,57 it was found that (-

)cathinone (S(-)1) had 4-fold greater affinity for 5-HT receptors than (+)AMPH (S(+)2).  

 

iii. Adrenergic effects 

Since cathinone causes a number of sympathomimetic effects, especially cardiovascular, 

investigations were made to determine if these effects were due to the release of 

norepinephrine (NE) from synaptic nerve terminals. In an experiment with slices of rabbit 

heart tissue prelabeled with [3H]NE, it was found that (-)cathinone (S(-)1) was able to 

increase the radioactivity and its potency was found to be half of (+)AMPH (S(+)2).58 This 

NE release due to cathinone was blocked when the tissue was pretreated with 

desipramine and cocaine. Hence, it was concluded that like (+)AMPH (S(+)2), (-

)cathinone (S(-)1) also had a releasing effect on peripheral NE storage sites.58  

It was also found that, (+)cathine (5) and (-)cathinone (S(-)1) were equipotent in 

increasing the radioactivity in [3H]NE-prelabeled rabbit atrium slices.59 These results were 

supported by previously conducted in vivo experiments by Kawaguchi et al.60 where they 

showed that, in anaesthetized rats, (+)cathine (5) and (-)cathinone (S(-)1) had the same 

potencies in increasing heart rate and blood pressure.  

 

5. Early structure-activity relationship (SAR) studies  

a. In vivo studies 

Drug discrimination studies were conducted by Glennon et al.44 on both the isomers of 

cathinone (1), (+)cathine (5), a-desmethylcathinone (8) and a few 4-substituted 

cathinones (Table 1).44 All the compounds were tested in rats previously trained to 
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discriminate between 0.6 mg/kg of racemic cathinone (1) from vehicle in a two-lever 

operant task. It was found that the naturally occurring (-)cathinone (S(-)1)  (ED50 = 0.22 

mg/kg) was 3-fold more potent than (+)cathinone (R(+)1)  (ED50 = 0.72 mg/kg) and almost 

equipotent to (+)AMPH (S(+)2)  (ED50 = 0.20 mg/kg).44 a-Desmethylcathinone (8) was 

found to be inactive even at twice the concentration (1.2 mg/kg) of the training drug. This 

suggested that the a-methyl group contributes to the activity/potency of cathinone (1). 

(+)Cathine (5) (ED50 = 1.61 mg/kg) was found to be 7-fold less potent than (-)cathinone 

(S(-)1), whereas all the 4-substituted cathinones were found to be inactive.44 

 

Table 1. Cathinone analogs examined in early drug discrimination studies.44  

 

 

 

 

Agent R1 R2 ED50 (mg/kg) 

Racemic cathinone (1) -CH3 -H 0.24 

(-)Cathinone (S(-)1)   -CH3 -H 0.22 

(+)Cathinone (R(+)1) -CH3 -H 0.72 

a-Desmethylcathinone (8) -H -H Inactive 

(±)-4-Hydroxycathinone (9) -CH3 -OH Inactive 

(±)-4-Methoxycathinone (10) -CH3 -OCH3 Inactive 

(±)-4-Chlorocathinone (11) -CH3 -Cl Inactive 

 

O

NH2

R1

R2
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In another drug discrimination study, (-)cathinone (S(-)1), 2-amino-1-tetralone (12, Figure 

6), and N,N-dimethylaminopropiophenone (13, Figure 6) were tested for their ability to 

substitute for (+)AMPH (S(+)2) in rats trained to discriminate between (+)AMPH (S(+)2) 

and saline.61 It was found that 2-amino-1-tetralone (12) produced saline-like responses 

at two and four times the generalization dose of (-)cathinone (S(-)1) (0.8 mg/kg) and 

caused disruption in behavior at higher doses. N,N-Dimethylaminopropiophenone (13) 

was also found to produce saline-like responses at  doses up to 2.5 mg/kg. This 

suggested that constraining or extending the chain diminished the ability of the compound 

to produce AMPH-like responses.61 

 

  

 

 

 

Figure 6. Structures of 2-amino-1-tetralone (12), N,N-dimethylaminopropiophenone (13), 
and b-aminopropiophenone (14).  
 
 

b. In vitro studies  

(-)Cathinone (S(-)1),  a-desmethylcathinone (8),  2-amino-1-tetralone (12), b-

aminopropiophenone  (14, Figure 6), and N,N-dimethylaminopropiophenone  (13) were 

examined by Kalix and Glennon61 for their in vitro ability to release [3H]DA from rat 

caudate nucleus. In this study, (-)cathinone (S(-)1) was found to be the most potent 

O NH2O
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compound, and among the four analogs only a-desmethylcathinone (8) had an effect of 

similar magnitude as (-)cathinone (S(-)1).61 These results suggested that (-)cathinone (S(-

)1), like (+)AMPH (S(+)2) exerts its effects via a dopaminergic system.61 

 

D. Synthetic cathinones 

1. Methcathinone 

a. History 

Because N-monomethylation of AMPH (2), methamphetamine (METH, 15), results in 

increased stimulant potency,62 the same was thought for cathinones. The N-

monomethylated cathinone was coined by Glennon et al.63 as ‘methcathinone’ (MCAT, 

16) by the analogy to amphetamine-methamphetamine.63 MCAT (16, Figure 7) might be 

considered as the first synthetic cathinone.63 Compound 16 was first synthesized in 

191564 and again in 192065 by Eberhard. It was synthesized as an intermediate in the 

preparation of ephedrine (19) and norephedrine (6) as reported by Glennon.66 However, 

the most acknowledged synthesis of MCAT (20) was by Roger Adams and his students 

in 1928 where they used Eberhard’s synthetic scheme (Scheme 1).67  

 

 

 

 

  

 

Figure 7. Structures of METH (15), its optical isomers S(+)15, R(-)15 and MCAT (16). 
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Scheme 1.a Eberhard’s synthetic scheme for ephedrine with MCAT as an intermediate.67 

 

 

 

aReagents: a. Bromination; b. CH3NH2 (condensation); c. reduction. 

 

Although MCAT (16) has been around for over a century, it was only synthesized as a 

precursor for the synthesis of ephedrine (19) as reported by Glennon.66 The optical 

isomers of MCAT (16) (Figure 8) were first synthesized and patented in Germany in 1936 

as intermediate for ephedrine (19) synthesis.68 It was again patented in 1957 as an 

analeptic agent by Parke-Davis.69 Serendipitously, it was also found to have locomotor 

stimulation in mice when a number of phenylisopropylamine (PIA)-related analogs were 

tested70 but not much attention was paid during the time. 

 

 

 

 

 

Figure 8. Structures of optical isomers of MCAT (16). 
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As reported by Glennon,66 in a document from the then USSR Interior Ministry in 1989, it 

was found that MCAT (16) was widely abused in the former Soviet Union under the name 

of Ephedrone (other street names include “jeff”, “Jee cocktail” and “cosmos”) and had 

surfaced for the first time in 1982.66 However the reports of its abuse only came to light 

in the United States in the early 1990s which resulted in its placement in the Schedule I 

controlled substances.2,66,71 

 

b. Early studies on MCAT (16) 

In a study conducted by Glennon et al.63 it was found that MCAT (16) had AMPH-like 

stimulus effects and was able to increase the release of radioactivity from rat striatal 

tissues prelabeled with [3H]DA. In the same study, it was also found that MCAT (16) was 

several times more potent than racemic cathinone (1) in producing locomotor stimulation 

in mice.63 

 

Stimulus generalization studies with rats trained to discriminate 8 mg/kg cocaine from 

saline were conducted.72 The rank order of potency was found to be MCAT (16) (ED50 = 

0.39 mg/kg) > cathinone (1) (ED50 = 0.69 mg/kg) >  cocaine (4) (ED50 = 2.6 mg/kg).72 

Racemic MCAT (16) was found to be approximately 2- and 7-fold more potent than 

cathinone (1) and cocaine (4), respectively.72 It was thought that like cathinone (1), (-

)MCAT (S(-)16) would be more potent than (+)MCAT (R(+)16) and the first enantiomeric 

comparison study was conducted in 1995 by Glennon et al.73 In a mouse locomotor 

stimulation study, (-)MCAT (S(-)16) was found to be several times more potent than 

(+)MCAT (R(+)16).73 It was also found to be 3.5- and 6-fold more potent than (+)AMPH 
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(S(+)2) and (-)AMPH (R(-)2), respectively as a locomotor stimulant.73 In a drug 

discrimination study using rats trained to discriminate cocaine (4) from saline the rank 

order of potency was found to be (-)MCAT (S(-)16) (ED50 = 0.18 mg/kg) > racemic MCAT 

(16) (ED50 = 0.39 mg/kg) > (+)MCAT (R(+)16) (ED50 = 0.51 mg/kg).73 

 

A few years later another study was conducted by Young and Glennon74 where (-)MCAT 

(S(-)16) was used as a training drug in rats. It was found that (-)MCAT (S(-)16) had a rapid 

onset of action i.e. within 5 min, and its effects lasted for approximately 60-90 min.74 In 

this stimulus generalization study the order of potency was found to be  (-)MCAT (S(-)16)  

(ED50 = 0.11 mg/kg) > (+)METH (S(+)15) (ED50 = 0.17 mg/kg) > (-)cathinone (S(-)1) (ED50 

= 0.19 mg/kg) > (+)AMPH (S(+)2)  (ED50 = 0.23 mg/kg) > racemic MCAT (16) (ED50 = 0.25 

mg/kg) > racemic cathinone (1) (ED50 = 0.41 mg/kg) > (+)MCAT (R(+)16) (ED50 = 0.43 

mg/kg) > cocaine (ED50 = 1.47 mg/kg).74 It was also found that the DA receptor antagonist, 

haloperidol antagonized (-)MCAT (S(-)16) effects.74 This concluded that (-)MCAT (S(-)16) 

is a very potent CNS stimulant drug of abuse and had AMPH-like stimulus effects.74 

 

c. Transporter studies 

MCAT (16) had been shown to act as a DAT releaser63 and its effects on the 

norepinephrine transporter (NET) and serotonin transporter (SERT) were examined. 

Rothman75 showed that (-)MCAT (S(-)16) had the ability to act as a releasing agent at 

DAT, NET and SERT and had potency similar to (+)METH (S(+)15) (Table 2). (-)MCAT 

(S(-)16) was found to be a potent releasing agent at DAT and NET but was weak at 

SERT.75 In another study Cozzi et al.76 evaluated the ability of MCAT (16) to release 
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monoamines at DAT, NET,  SERT and vesicular monoamine transporter 2 (VMAT2). 

From these studies it was concluded that MCAT (16) exerts its effects primarily through 

DAT and NET and not SERT nor VMAT2.76 

 

Table 2. Releasing potencies of METH (15) and MCAT (16) at the transporters.75  

Test agents DA Release 

[EC50 (nM ± S.D)]  

NE release 

[EC50 (nM ± S.D)]  

5-HT Release 

[EC50 (nM ± S.D)]  

(+)METH (S(+)15) 24.5 ± 2.1  12.3 ± 0.7   736 ± 45 

(-)MCAT (S(-)16) 14.8 ± 0.4 13.1 ± 0.6 1772 ± 160 

 

d. Subsequent SAR studies on MCAT (16) 

Early SAR studies on MCAT (16) were focused on the terminal amine.77 Increasing the 

chain length of the terminal amine to ethyl (ethcathinone, N-EtCAT, 20, Figure 9) or to n-

propyl (n-propylcathinone, N-PrCAT, 21, Figure 9) resulted in a slight decrease in their 

potencies but resulted in stimulus generalization in drug discrimination studies in rats 

trained to discriminate (+)AMPH (S(+)2) from vehicle (Table 3).77 N,N-Dimethylcathinone 

((±)Di MeCAT, 22, Figure 9)  was found to be 1.6-fold less potent than racemic MCAT 

(16), and its isomer (-)N,N-dimethylcathinone ((-)Di MeCAT, 23, Figure 9) was also found 

to be only 1.6-fold less potent than (-)MCAT (S(-)16) and equipotent to (-)cathinone (S(-

)1).77 
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Table 3. Stimulus generalization studies in rats trained to discriminate (+)AMPH (S(+)2) 
from vehicle.47,73,77  
 
Test agent  ED50 (mg/kg) 

(-)Cathinone (S(-)1) 0.42 

(+)AMPH (S(+)2) 0.33 

(±)MCAT (16) 0.37 

(-)MCAT (S(-)16) 0.25 

N-EtCAT, 20 0.77 

N-PrCAT, 21 2.03 

(±)Di MeCAT, 22 0.61 

(-)Di MeCAT, 23 0.44 

 

 

 

 

 

 

 

 

 

 

 
Figure 9. Structures of compounds studied in the early SAR studies with changes at the 
terminal amine.  
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In a rat brain synaptosome study conducted by Yu et al.78 N,N-diethylcathinone (Di 

EtCAT, 24, Figure 9) was found to be inactive in both release and uptake assay at DAT, 

NET and SERT. N,N-Diethylcathinone (24), also known as Tenuate®, was found to be a 

prodrug and its metabolite, N-EtCAT (20), was found to act as a substrate (releaser) at 

NET (IC50 = 99.3 nM) and as a reuptake inhibitor at DAT (IC50 = 1014 nM).78 Interestingly, 

at SERT N,N-diethylcathinone (24) was found to act as a weak substrate, stimulating 

[3H]5-HT release (IC50 = 2118 nM) and had similar potency as a SERT reuptake inhibitor 

(IC50 = 3840 nM).78 In another study, N-isopropylcathinone (N-iPrCAT, 25, Figure 9) and 

N-tert-butylcathinone (N-tBuCAT, 26, Figure 9) were able to produce hyperlocomotion in 

rats at doses of 7.5 mg/kg and 10 mg/kg, respectively, which was approximately half of 

the effect produced by MCAT (16) at 5 mg/kg suggesting that increasing the bulk at the 

terminal amine reduces its AMPH-like locomotor stimulant activity.79  

 

 

2. Bath Salts 

a. Background 

Iverson80 in 2010, submitted a report to the British Home Office on the novel synthetic 

cathinones emerging on the European clandestine market at an alarming rate. One of the 

popular drug combination in 2010 was called ‘bath salts’ but also had several other 

names.66 Bath salts mainly comprised of methylone (MDMC, 27, Figure 10), mephedrone 

(MEPH, 28, Figure 10), and methylenedioxypyrovalerone (MDPV, 29, Figure 10).66 It can 

also consist of a combination of one, two or more of these and/or other agents.66 

 



www.manaraa.com

   

 

 29 

It was reported that there was an increase in the number of compounds with simple b-

keto modification of well-known amphetamines.80 The presence of the ketone 

functionality was enough to circumvent the control measures which were already in place 

for their amphetamine counterparts.80 The most common synthetic cathinone 

encountered by UK forensic providers was MEPH (28) and it accounted for 89% of all the 

cathinone seizures.80 MEPH (28) and other cathinones were predominantly sold over the 

internet and in ‘head shops’ and often had a disclaimer saying ‘not for human 

consumption’.80 They were sold as research chemicals, ‘novelty bath salts’ or as plant 

food/plant growth regulators as reported by Iverson.80 

 

 

 

 

 

 

 

Figure 10. Structures of methylone (MDMC, 27), mephedrone (MEPH, 28), and 
methylenedioxypyrovalerone (MDPV, 29), the three initial components of bath salts. 
 

It was suggested that this tremendous escalation in the use of MEPH and other 

cathinones was due to the unavailability and low purity of cocaine (4) and MDMA in 

2009.80 As reported by Iverson,80 a number of cathinone-related deaths had also been 

reported in the UK and other European countries. Due to this sudden rise and a number 

of cases of cathinone abuse, MDMC (27), MEPH (28) and MDPV (29) were temporarily 
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placed under U.S Schedule I category in 201181 and eventually led to their permanent 

placement in U.S Schedule I class.82,83 

 

 b. Mode of action 

Rothman et al.84 showed that MEPH (28) produced (+)AMPH-like responses, but little 

was known about MDMC (27) and MDPV (29). In a study conducted by Cameron et al.85 

using a frog oocyte preparation transfected with human dopamine transporter 

(hDAT), MEPH (28) was found to produce an inward (depolarizing) current through hDAT 

similar to METH (15) (Figure 11).85 MEPH (28) was examined along with (-)MCAT (S(-

)16) and (+)METH (S(+)15) and the order of potency was found to be (-)MCAT (S(-)16) 

(EC50 = 0.23 µM) > (+)METH (S(+)15) (EC50 = 0.64 µM) ³ MEPH (28) (0.84 µM).85 
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Figure 11. Inward depolarizing currents generated in hDAT by application of 10 μM 
(+)METH (S(+)15) (a), (-)MCAT (S(-)16) (b), MEPH (28) (c) and dopamine (d) at −60 
mV.85 
 

 

On the contrary, it was found that MDPV (29) had an opposite effect.85 MDPV (29) 

produced an outward (hyperpolarizing) current similar to cocaine (Figure 12).85,86 

Moreover, MDPV (29) was able to reverse the effect of MEPH (28) in a similar manner as 

cocaine reverses the effect of (+)METH (S(+)15)  and MEPH (Figure 13).86  
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Figure 12. Outward hyperpolarizing current produced in hDAT by application of 10 μM 
of MDPV (29) (above) and cocaine (4) (below).86 
 

 

Figure 13. At 10 μM MDVP (29) (a)  and cocaine (4) (b) were able to block the effect of 
MEPH (28), displaying their blocking action at hDAT.86 
 

Baumann and co-workers87 carried out in vitro assays, using rat brain synaptosome, and 

in vivo studies to examine the bath salts components. It was found that MDPV (29) is a 

potent reuptake inhibitor of DAT and NET but weak at SERT (Table 4). From the in vivo 

studies, MDPV (29) was found to be at least 10-fold more potent than cocaine (4) in 

producing locomotor activation, tachycardia, and hypertension in rats.87 
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Table 4. Effects of bath salt components, AMPH (2), and cocaine (4) on synaptosomal 
release and uptake inhibition at DAT, NET, and SERT.87  
 
Agents  Release assay EC50 (nM) Reuptake inhibition assay IC50 (nM) 

DAT NET SERT DAT NET SERT 

MDMC (27) 117  140 234  1232 1031  1017  

MEPH (28)   51    58  122    762    487    422  

MDPV (29)* Inactive Inactive Inactive       4.1      26 3329  

S(+)2     5.8     6.6   698     93     67 3418  

Cocaine (4)* Inactive Inactive Inactive   211   292   313  

*MDPV (29) and cocaine (4) produced <35% [3H]MPP+ release. 

  

Homologation of the a-side chain of MDMC (27) from methyl to ethyl (butylone, 30, Figure 

14) resulted in reuptake inhibition at DAT, NET, and SERT.88 In another study conducted 

by Del Bello et al.89 it was found that expansion of the methylenedioxy ring of MDMC (27) 

to an ethylenedioxy ring (EDMC, 31, Figure 14) slightly reduced its potency as a releasing 

agent at all three transporters. Replacement of the methylenedioxy ring of MDPV (29) to 

a fused phenyl ring (naphyrone, 32, Figure 14) resulted in reuptake inhibition at the three 

transporters and was found to be 6- and 15-fold less potent than MDPV (29) at NET and 

DAT, respectively.88 On the contrary, naphyrone (32) was found to be 10-fold more potent 

than MDPV (29) at SERT.88  

From these studies it was evident that substituents on the terminal amine, a-side chain 

and the aromatic ring played a significant role in the actions (releasers vs reuptake 
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inhibitors) and selectivity (DAT, NET, and SERT) of cathinone analogs as reported by 

Glennon and Dukat.2 

 

 

 

 

Figure 14. Structures of butylone (30), ethylenedioxymethcathinone (EDMC, 31), and 
naphyrone (32). 

 

3. Synthetic cathinones as releasing agents  

As MCAT (16)75 and MEPH (28)87 were already found to be releasing agents at DAT, a 

number of phenyl ring-substituted MCAT (16) analogs were subsequently evaluated.  

a. 4-Substituted MCAT 

MCAT (16) and six other 4-substituted analogs (Table 5) were examined in intracranial 

self-stimulation  (ICSS) and in in vitro studies in order to characterize or identify what 

physicochemical properties were important for their actions.90 It was found that all six 4-

substituted analogs were able increase DA and 5-HT release via DAT and SERT.90 MCAT 

(16) was found to be the most potent analog at DAT and 4-trifluoromethylmethcathinone 

(38) was found to be the least potent.90 There was a strong correlation seen between in 
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vitro DAT selectivity and ICSS facilitation (Figure 15).90 The release activity at NET of 4-

substituted MCAT analogs were conducted recently by Walther et al.91 

Table 5. In vitro release potencies (EC50) of 4-substituted MCAT analogs at DAT, NET 
and SERT.90,91 
 
 
 
 
 
 
 
 
 
 
 
-R NET (nM)91 DAT (nM)90 SERT (nM)90 DAT vs SERT 

selectivity* 

-H (MCAT, 16)   22     12.5 3860 309 

-F (33)    -     83.4 1298   15.4 

-Cl (34)   33     42.2   144     3.40 

-Br (35) 100     59.4     60     1.01 

-CH3 (36)   63     49.1   118     2.41 

-OCH3 (37) 111   506   120     0.24 

-CF3 (38) 900 2700   190     0.07 

*DAT vs SERT selectivity = SERT EC50/DAT EC50. 
 

HN

CH3
O

CH3

R



www.manaraa.com

   

 

 36 

 

 

 

 

 

 

Figure 15. Correlation between in vitro DAT vs SERT selectivity and maximum in vivo 
ICSS facilitation (shown as percentage of maximum control reinforcement rate).90 

 

From these studies it was found that substitution at the 4-position influences the potency 

and selectivity at DAT and SERT.90 Increase in the size of the substituent shifts its potency 

from DAT to SERT.90 Homology modeling studies on hDAT and human serotonin 

transporter (hSERT) also showed that the binding pocket associated with the 4-position 

in hDAT can only accommodate smaller substituents, whereas the larger binding pocket 

of hSERT can accommodate larger substituents.92 

 

b. 3-Substituted MCAT  

Five 3-substituted analogs and MCAT (16) were tested for their potencies as releasing 

agents at DAT, NET, and SERT (Table 6).91 3-Cl MCAT (39) was tested previously93 and 

in the most recent study, from our laboratory, its potency was found to be comparable 

among the three transporters.91 The 3-Cl MCAT (39) and 3-Br MCAT (40) analogs have 
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been previously found and seized from the clandestine market.94 The potencies of all the 

3-substituted MCAT analogs at DAT as releasing agents were 2- to 5-fold higher than the 

corresponding 4-substituted MCAT (16) analogs.91 The potencies at SERT were about 

half as compared to the corresponding 4-MCAT analogs and had a narrow range of 

potency (Table 5).91 

 

Table 6. In vitro release potencies (EC50) of 3-substituted MCAT analogs at DAT, NET 
and SERT.91  
 

 

 

 

 

-R NET (nM)91 DAT (nM)91  SERT (nM)91  DAT vs SERT 

selectivity* 

-H (MCAT, 16)   22   21 5853 279 

-Cl (39)   19   26   211     8 

-Br (40)   25   21   136     6 

-CH3 (41)   27   28   268   10 

-OCH3 (42) 111 109   683     6 

-CF3 (43) 370 714   281     0.4 

*DAT vs SERT selectivity = SERT EC50/DAT EC50. 
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c. 2-Substituted MCAT  

2-Substituted MCAT analogs were found to be the least potent as compared to their 3- 

and 4-substituted analogs, being 2- to 10-fold less potent than the corresponding 4-

substituted analogs.85 The NET potencies were comparable to their DAT potencies, and 

the SERT potencies of the 2-substituted analogs were 4 to 47-fold lower than the 

corresponding 4-substituted analogs (Table 7).91  

 

Table 7. In vitro release potencies (EC50) of 2-substituted MCAT analogs at DAT, NET 
and SERT.91 

 

 

 

 

 

-R NET (nM)91 DAT (nM)91  SERT (nM)91  DAT vs SERT 

selectivity* 

-H (MCAT, 16)   22   25 2592 103 

-Cl (44)   93 179  2815   16 

-Br (45) 156 650  2837     4 

-CH3 (46)   53   81   490     6 

-OCH3 (47) 339 920  7220     8 

*DAT vs SERT selectivity = SERT EC50/DAT EC50. 
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d. Other phenyl-ring substituted MCAT (16) 

Blough et al.95 evaluated a few disubstituted MCAT analogs in rat brain synaptosomes 

for their ability to release DA and 5-HT (Table 8). On comparing with MCAT, all the three 

disubstituted MCAT analogs were less potent at DAT and more potent at SERT as 

releasing agents.95 Three other aryl-substituted agents were evaluated for their DAT and 

SERT release potencies.89 The first two compounds, 1-naphthylmethcathinone (51) and 

2-naphthylmethcathinone (52), were found to be equipotent when compared to MCAT 

(16) at DAT, and 198-fold and 158-fold more potent at SERT as releasing agents, 

respectively.95 Lastly, the phenyl ring of MCAT was replaced with an indole ring giving 

the 3-indole analog (i.e. 53) which was 2-fold less potent at DAT and 103-fold more potent 

at SERT when compared to MCAT.95 
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Table 8. DAT and SERT-mediated release activity of disubstituted and other ring 
substituted analogs of MCAT.95 

 
 

 
 
Agent -R1 -R2 DA release 

(nM) 

5-HT release 

(nM) 

DAT vs SERT 

selevtivity 

MCAT (16) -H -H   50 4270 86 

48 -Cl -Cl 178     74      0.4 

49 -F -F 227    960       4.2 

50 -Cl -CH3 124      41       0.3 

51 - -   55      21       0.4 

52 - -   34      27       0.8 

53 - -   93      41       0.4 

*DAT vs SERT selectivity = SERT EC50/DAT EC50. 
 
In summary, substitution at the 2-position was not well tolerated by any of the three 

transporters.91,95 However, 3- and 4-substituted analogs were roughly equipotent as 

releasing agents at DAT and NET with a high correlation but are less potent at SERT.91 

Increasing the steric bulk near the 3- or 4-position of the phenyl ring improved potency 

towards SERT as a releasing agent which was also seen with the homology modeling 

studies conducted by Sakloth et al.92 
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4. Synthetic cathinones as reuptake inhibitors  

MDPV (29) was the first synthetic cathinone, found by our laboratory, to act as a reuptake 

inhibitor at DAT.85,86 Therefore, a systematic deconstruction approach was followed to 

determine which structural feature/s contribute to its unique action.96 MDPV (29) and 

seven deconstructed analogs (Figure 16) were tested in voltage-clamped (−60 mV) 

Xenopus oocytes transfected with the hDAT and all the analogs were found to act as DAT 

reuptake inhibitors.96 Converting MDPV (29) (IC50 = 135 nM) to its amphetamine analog 

(i.e., 54), by removal of the carbonyl group, resulted in more than an 8-fold decrease in 

its potency (IC50 = 1150 nM).96 Removal of the methylenedioxy group (i.e., a-PVP, 55) 

had little effect (IC50 = 205 nM), whereas reducing the length of the  a-side chain from n-

propyl to methyl (i.e., 56) dramatically decreased its potency by 25-fold (IC50 = 3540 

nM).96 Replacing the pyrrolidine ring of MDPV (29) with the simplest tertiary amine (i.e., 

57) resulted in a 5-fold decrease (IC50 = 715 nM) and further conversion to a secondary 

amine (i.e., 58, IC50 = 7950 nM) and a primary amine (i.e., 59, IC50 = 27000 nM) resulted 

in 59- and 200-fold decrease in potency when compared to MDPV (29), respectively.96  
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Figure 16. Deconstructed analogs of MDPV (29) with their IC50 (nM) values tested 
in voltage-clamped (−60 mV) Xenopus oocytes transfected with hDAT.96 
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In a study conducted by Kolanos et al.,97 racemate MDPV (29) and its two isomers were 

tested for their ability to inhibit the reuptake of [3H]DA. It was found that (+)MDPV (S(+)29, 

Figure 17) (IC50 = 2.13 nM) was twice as potent as racemic MDPV (29) (IC50 = 4.85 nM) 

and 180-fold more potent than (-)MDPV (R(-)29, Figure 17) (IC50 = 382 nM).97 

 

 

 

 

 

 

Figure 17. Structures of optical isomers of MDPV (29). 

 

5. Second generation synthetic cathinones – a-PVP 

The first synthesis of a-PVP (55) was described by Wander in a British patent in 1963 

and it was found to have CNS stimulant action.98 Its most popular street name “flakka” 

was derived from “la flaca” which is a Spanish slang term for a “beautiful women” as 

reported by Kolesnikova et al.99 Other commonly used street names are speed, snow 

blow, gravel, crystal love, vanilla sky, and sextacy.99,100 a-PVP (55) was not seen on the 

market prior to 2000 and the EMCDA reported China as its major source.100 The first 

seizure of a-PVP (55) was reported in 2011 in France and then in Hungary and Poland 

in 2013-2014.99 Between 2012 and 2015, a total of 115 deaths associated with a-PVP 

were reported in Europe.101 In the United States, it was first encountered in early 2010s 
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in Florida, Ohio, and Tennessee.102 a-PVP (55) was related to at least 80 deaths between 

September 2014 and December 2015 in Florida alone as reported by Palamar et al.103 a-

PVP (55) was placed in U.S. Schedule I in March 2014.104 

 

a. SAR studies on a-PVP 

As removal of the methylenedioxy group of MDPV (i.e., a-PVP, 55) had minimal effect on 

its potency as a reuptake inhibitor at DAT,96 a deconstruction and elaboration study was 

conducted on a-PVP (55) (Figure 18).105,106 Truncating the a-side chain in a stepwise 

manner from n-propyl to ethyl (i.e., a-PBP, 60), methyl (i.e., a-PPP, 61) and completely 

replacing it with -H (i.e., 62) resulted in an overall 200-fold decrease in potency 

when tested to inhibit uptake of [3H]DA.105,106 None of the compounds inhibited the uptake 

of [3H]5-HT.106 For the elaboration study, the a-side chain was extended from n-propyl to 

n-butyl (i.e., 63) which resulted in a slight increase in its potency, whereas branching the 

side chain to i-propyl (i.e., 64) decreased potency by 5-fold.106 Other substitutions at 

the a-side chain were also evaluated (Figure 18) and all analogs with changes at the a-

position were found to be at least as potent as a-PVP except for the constrained analog 

69 which was found to be over 700-fold less potent than a-PVP.106 All the analogs in this 

‘deconstruction-elaboration’ study were found to be DAT reuptake inhibitors.106  
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Figure 18. Structures of deconstructed (top in red box) and elaborated  (bottom in green 
box) analogs of a-PVP tested in our laboratory for their ability to inhibit uptake of 
[3H]DA.106 
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Nelson et al.107 conducted a conditioned taste avoidance test in rats using racemic and 

both isomers of a-PVP (Figure 19). It was found that rats injected with the racemate and 

S-isomer displayed avoidance to the saccharin solution.107 The avoidance shown by 3 

mg/kg of racemic a-PVP was found to be similar to 1.5 mg/kg of the S-isomer,107 whereas 

the R-isomer did not induce any taste avoidance even at 6 mg/kg.107 This study concluded 

that the S-isomer of a-PVP is the eutomer.107 

 

 

 

 

 

Figure 19. Structures of the isomers of a-PVP. 
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E. Methylphenidate  

Methylphenidate (MP, 70, Figure 20) was first synthesized in 1944 (Scheme 2),108 

however its psychostimulant activity was only recognized after a decade as reported by 

Heal and Pierce.109 MP (70) has two chiral centers and therefore exists as four 

stereoisomers i.e. the dextro and levo enantiomers of both threo and erythro-

methylphenidate (Figure 20). MP is a commonly used drug in the United States and 

although it was initially used as an analeptic agent for reversal of barbiturate-induced 

coma, now it is mainly used to treat attention deficit/hyperactivity disorder (ADHD) in 

children and adults.109,110 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20. Structures of MP (70) and its four isomers.  
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Scheme 2a. Synthesis of MP (70) by Panizzon in 1944.108 

 

 

 

 

 

 

 

 

aReagents and conditions: a. H2SO4; b. H2, Pt, CH3COOH 40 °C; c. HCl, reflux; d. CH3OH, 
H2SO4. 

 

MP (70) was originally patented in 1950 by CIBA Pharmaceuticals (now known as 

Novartis) for its method of preparation, it was later patented (under the brand name 

Ritalin) as a treatment of psychiatric disorders in 1954 as reported by Wenthur.111 Figure 

21 shows the timeline of MP (70) and its development into different formulations over the 

years.111  
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Figure 21. Timeline for FDA approval years for different MP (70) formulations and brand 
names. (T = tablets, IR = immediate release, ER = extended release, ET = extended 
release tablets, EC = extended release capsules, S = solutions, P = transdermal patch, 
ES = extended release oral suspension).111 

 

1. MP (70) and its isomers  

The early formulation of MP (70) contained all four isomers; however, a study conducted 

by Szporny and Görög5 showed that only the threo isomer of MP had a locomotor 

stimulant effect. Due to this discovery, all the current FDA approved formulations of MP 

(70) contain dl-threo MP (tMP, 70) i.e. a 50:50 mixture of d- and l-isomers of tMP as 

reported by Heal and Pierce.109 After more than three decades, a study was conducted 

by Ding et al.,112 where they evaluated both d- and l-threo isomers of MP (70) using 

positron emission tomography (PET) studies in human and baboon brains, and 

microdialysis studies in rats. From the PET studies it was found that after i.v. injection of 

[11C]d-threo-MP and [11C]l-threo-MP, only the d-threo MP showed specific binding in the 

basal ganglia, whereas l-threo MP was only responsible for nonspecific binding (Figure 

22).112 
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Figure 22. PET images of human brain after injection of [11C]d-threo-MP and [11C]l-threo-
MP. Scans from the top of the brain to the base (left to right). High accumulation of 
radioactivity is seen in the basal ganglia (white box) only for d-threo MP and not for l-threo 
MP.112 

 

Microdialysis studies in rats showed that d-threo MP (20 mg/kg) increased extracellular 

striatal DA concentration by 650% at 80 min, as compared to a 450% increase seen with 

racemic tMP (70) (20 mg/kg) and negligible increase with l-threo MP (20 mg/kg).112 This 

study concluded that only the d-threo isomer of tMP (70) is responsible for its stimulant 

actions. This finding led to clinical development of Focalin® and Focalin XR®; it only 

consists of d-threo MP (also known as dexmethylphenidate), which has been approved 

by the FDA for the treatment of ADHD in children aged 6-12 years as reported by Heal 

and Pierce.109 
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2. Pharmacokinetics of tMP (70) in humans  

In a study conducted by Wargin et al.,113 in healthy human volunteers  and ADHD children, 

it was found that MP (70) was rapidly absorbed and it reached its peak concentration after 

2.2 h of oral administration. Other pharmacokinetic data are shown in Table 9.  

Table 9. Pharmacokinetics of MP (70) in normal adults and ADHD children.113 

 Dose 
(mg/kg) 

Tmax (h)* Cmax* 
(ng/mL) 

Cle* 
(L/hr/kg) 

K (hr-1)* t1/2 
(h)* 

       
MP in healthy 
adults  

0.15 2.2 3.5 10.5 0.33 2.05 

0.30 2.1 7.8 10.5 0.30 2.14 

MP in ADHD 
children 

0.30 1.5 10.8 10.2 0.28 2.43 

*Tmax = time of peak concentration, Cmax = peak concentration, Cle = oral clearance, K = 
elimination constant, t1/2 = half life.  

 

In another preliminary study conducted by Srinivas et al.,114 to evaluate the enantiomers 

of MP, it was found that after a dose of 40 mg of MP (70) the Tmax for both the enantiomers 

of MP (70) was 2 h and the Cmax was found to be 11.71 ng/mL for d-threo MP and 1.97 

ng/mL for l-threo MP. The area under curve (AUC) calculated for both the enantiomers 

also indicated that d-threo MP (65.24 ng/mL/h) was 8-fold greater than the l-threo MP 

(7.53 ng/mL/h).114  
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3. Metabolism of MP (70) and its isomers  

Faraj et al.115 showed that in healthy human volunteers and a group of patients when 20 

mg of tMP-14C was administered orally, peak plasma levels of 14C were seen after 2 h 

and t1/2 ranged from 2 to 7 h. From the urinary excretion pattern of 14C it was found that 

tMP (70) had complete absorption. The major metabolite of MP (70), was found to be 

ritalinic acid (RA, 71, Figure 23). About 80% of the urinary 14C consisted of RA (71) and 

other metabolites only accounted for 1.5-2.5%.115 Figure 23 shows the metabolites of MP.  

 

The metabolism of MP (70) was found to be enantiospecific upon intravenous 

administration. There was a gradual shift seen in the enantiomeric ratio of d:l over time 

and a significant difference between the plasma concentration of d- and l-threo MP (70) 

is seen as reported by Heal and Price.109 In a urinary excretion profile for the tMP (70), d-

threo MP (70) was found to be in 10-fold higher levels than l-threo MP (70) and the urine 

had 2- to 3-fold higher levels of d-threo RA than l-threo RA.116 These studies suggested 

that tMP (70) enantiospecific ‘first-pass’ metabolism rather than enantiospecific 

excretion.116 
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The metabolites were tested for their locomotor activity in mice, and it was found that on 

i.p. administration p-OH MP(72, Figure 23) was inactive up to a 100 mg/kg dose.115 Oxo-

MP (75, Figure 23) was found to be a locomotor stimulant at a dose of 100 mg/kg and its 

activity was only 10% that of MP (70) at the same dose.115 In another study conducted by 

Patrick et al.117 the metabolites of threo and erythro-MP (70) were synthesized and tested 

for their locomotor activity by intracerebroventricular administration in rats. It was found 

that tMP (70) had a significantly greater maximal effect than the eMP (70).117 

Furthermore, p-OH tMP (72) was found to produce significantly greater locomotor activity 

than the corresponding p-OH eMP and also tMP (70).117 Both the isomers of RA (71) and 

p-OH RA (73, Figure 23) produced locomotor activity, however their effect was 

considerably less than that for tMP (70).117  

 

Metabolism of MP (70) primarily occurs through deesterification by carboxyesterase 1A1 

(CES1A1) and not by CES2 or CES3. Sun et al.118 showed that CES1A1 has high catalytic 

efficiency both for d- and l-tMP (70). However, the catalytic efficiency for l-tMP (kcat/km = 

7.7 mM-1min-1) was found to be greater than that for d-tMP (kcat/km = 1.3-2.1 mM-1min-

1).118 This decrease in the catalytic efficiency of CES1A1 for d-tMP (70) may also 

contribute to higher potency of d-tMP (70) as compared to l-tMP (70) in vivo.118 
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4. Pharmacology of MP (70) and its isomers  

a. In vitro neurochemistry  

In a rat brain homogenate study conducted by Anderson,119 tMP (70) was found to be a 

potent inhibitor of DAT (IC50 = 281 nM) and NET (IC50 103 nM). tMP (70) showed less 

than 10% inhibition of 5-HT at 30 µM.119 In another study, d-threo MP (70) and l-threo MP 

(70) were tested for inhibiting 0.1 µM [3H]DA and [3H]NE uptake in synaptosomal 

preparations of rat hypothalamus and striatum.120 d-threo MP (70) was found to be 10-

fold more potent as an inhibitor both of [3H]DA and [3H]NE than l-threo MP (70).120 In the 

same study, tMP (70) and both of its isomers were also evaluated for the release of 

catecholamines from synaptosomal preparations of rat hypothalamus and striatum, and 

neither racemic MP (70) nor its isomers produced any release of NE and produced only 

modest release of DA which was not statistically significant when compared with AMPH 

which was used as positive control.120 These studies suggested that MP (70) and its 

isomers act as DAT and NET reuptake inhibitors and not as releasers.  

 

b. In vivo neurochemistry  

In vivo microdialysis experiments were conducted to access extracellular levels of DA and 

5-HT in rat caudate putamen and NE in hippocampus due to tMP (70) (10, 20, and 30 

mg/kg), and compared it to the effect produced by AMPH (2.5 mg/kg).121 Similar to  

AMPH, tMP (70) increased DA in the caudate putamen in a dose-dependent manner, 

although, 20 mg/kg of tMP (70) was required to produce similar responses to 2.5 mg/kg 

AMPH.121 tMP (70) also increased NE levels in the hippocampus; however, none of the 

concentrations of tMP altered extracellular 5-HT.121 This study also showed that tMP (70) 
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enhanced NE efflux for a longer period of time as compared to DA and, at higher doses, 

a ceiling effect was observed with NE but not with DA. This concluded that tMP (70) shifts 

to a dopaminergic profile at higher doses.121 

 

5. Structure-activity relationship studies on MP (70) 

Many investigators have focused on the SAR of MP (70) as reported by Wenthur.111 

Various analogs have been synthesized with phenyl-ring substituents, changes in the 

terminal amine, changes in the piperidine ring, and with modifications of the ester group.  

a. Phenyl ring substituents 

An investigation conducted by Pan et al.122 in 1994 focused on the role of bromine 

substitution at the 2-, 3-, and 4-position of the phenyl ring of tMP (70). In an in vitro binding 

assay using rat brain membranes, all the three bromo-substituted analogs were found to 

inhibit the binding of [3H]WIN 35,428 (a selective DAT ligand) and [3H]nisoxetine (a 

selective NET ligand) with the rank order of potency: 3-bromo tMP (86) > 4-bromo tMP 

(93) > 2-bromo tMP (81) > tMP (6-, 20-, 9-fold more potent than tMP, respectively).122 

However, all three analogs and tMP (70) were found to be weak inhibitors of 

[3H]paroxetine (a selective SERT ligand).122 Extracellular dopamine levels in the striatum 

of conscious rats increased by a factor of 4 after 20 mg/kg of 4-bromo tMP (93) was 

administered i.p. The mean increase in DA levels for 3-bromo tMP (86) was about half 

that compared to 4-bromo tMP (70) and an intermediate increase was seen for 2-bromo 

tMP(81).122 In follow-up studies conducted by Pan et al. where the 2-, 3-, and 4-bromo-

substituted tMP analogs were resynthesized and retested, 2-bromo tMP (81) was found 
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to be 20-fold less potent than tMP (70) in inhibiting [3H]WIN 35,428 as reported by 

Deutsch et al.9 

 

A series of 2-, 3-, and 4-substituted tMP (70) analogs and five eMP (70) analogs (Table 

10) were evaluated in [3H]WIN 35,428 binding and [3H]DA uptake assays.9 All the eMP 

analogs were found to be less potent than their corresponding tMP analogs. In terms of 

tMP analogs, all the 2-substituted analogs were found to be less potent than their 

corresponding 3- or 4-substituted analogs, with methoxy having the largest loss in activity 

(ratio of IC50 for positions 2/4 = 1200), followed by bromo (270), chloro (95) and fluoro 

(41).9 Based on the X-ray crystal structures of 4-Cl tMP (95) and 2-OCH3 tMP (85) (Figure 

24) it was concluded that, substituents at the 2-position do not induce a large 

conformational change in the molecule and that the loss in the potency of the 2-

substituted analogs was due to a direct steric interaction with the receptor and not 

because of a conformational change of the ligand itself.9 

Figure 24. X-ray structures of 4-Cl tMP (95) and 2-OCH3 tMP (85) hydrochloride.9 

4-Cl tMP (95) 2-OCH3 tMP (85) 



www.manaraa.com

   

 

 58 

Having an electron-withdrawing group (EWG) at the 3- or 4-position of the phenyl ring 

increased binding potency; on the other hand, electron-donating groups (EDG) were 

found to be less potent than tMP (70).9 A significant difference was seen in the potencies 

of 3- and 4-substituted analogs. For groups such as -F, -Cl, -Br and -CH3, both 3- and 4-

substituted analogs were more potent than tMP (70).9 Larger groups, such as 4-NO2 (100) 

and 4-tBu tMP (94), were found to be significantly less potent than tMP (70).9 Two 3,4-

disubstituted analogs (3,4-diCl and 3,4-diOCH3) were evaluated and 3,4-diCl tMP (102)  

was found to be equipotent to 3-Cl tMP (87), whereas 3,4-diOCH3 tMP (103) was 3-fold 

less potent than 3-OCH3 tMP (92).9  Table 10 below shows the IC50 values of all the 

analogs in inhibition of [3H]WIN 35,428 binding and [3H]DA uptake assay.9 
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Table 10. Inhibition of [3H]WIN 35,428 binding and [3H]DA uptake of tMP, eMP and phenyl 
ring-substituted analogs.9,119 
 
 
 
 
 
 
 
 
 
 
 
-R [3H]WIN 35,428 binding (IC50, nM) [3H]DA uptake (IC50, nM) 

tMP analogs (70) 

tMP (70)                            83                 224 

2-Br (81)                        1870               3410 

2-Cl (82)                        1950               2660 

2-F (83)                        1420               2900 

2-OH (84)                      23100             35800 

2-OCH3 (85)                    101000             81000 

3-Br (86)                              4                   13 

3-Cl (87)                              5                   23 

3-F (88)                            41                 160 

3-CH3 (89)                            21                 100 

3-NH2.HCl (90)                          265                 578 

3-OH (91)                          321                 790 

3-OCH3 (92)                          288                 635 

4-Br (93)                              7                   26 
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-R [3H]WIN 35,428 binding (IC50, nM) [3H]DA uptake (IC50, nM) 

4-t-Bu (94)                      13500               9350 

4-Cl (95)                            21                   74 

4-F (96) 35                 142 

4-I (97) 14                   65 

4-CH3 (98) 33                 126 

4-NH2.HCl (99) 35                 115 

4-NO2 (100)                          494               1610 

4-OH (72) 98                 340 

4-OCH3 (101) 83                 293 

3,4-diCl (102)   5                     7 

3,4-diOCH3 (103)                          810               1760 

3,5-diCH3 (104)                        4690 - 

3,5-diCl (105)                            67 - 

3,4-benzo (106)                            11 - 

 

eMP analogs (70) 

2-Br (107)                      38100             59000 

2-Cl (108)                      52500             61000 

3-Cl (109)                          378               1540 

2-OCH3 (110)                    139000           290000 

4-tBu (111)                      41300             52500 
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In a more recent study conducted by Misra et al.8 three additional disubstituted analog 

were evaluated for their DAT binding affinities. 3,5-diCH3 tMP (104) was found to be 

approximately 60-fold less potent than its parent, tMP (70), whereas 3,5-diCl (105) and 

3,4-benzo tMP (beta naphthyl analog, 106) were found to be 1.3 and 8-fold more potent 

than tMP (70).8 

 

 

b. Modifications at the ester group 

In an early study conducted by Portoghese and Malspeis,123 the methyl group of the ester 

was replaced by other alkyl groups and cyclic substituents (Table 11) and examined for 

their central stimulant action relative to tMP (70). Out of the twelve substituents tested, 

only the ethyl ester (i.e., 112) retained substantial activity (i.e., 80% of the stimulant 

activity relative to tMP); all other analogs showed reduced effects.123 
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Table 11. Central stimulant actions of methylphenidate analogs with varying ester groups 
relative to tMP (70).123 

 

 

-R Central stimulant activity relative to 70 

Methyl (tMP, 70)        1.00 

Ethyl (112)        0.80 

n-Pr (113)        0.20 

i-Pr (114)        0.33 

n-Bu (115)        0.13 

i-Bu (116)        0.10 

sec-Bu (117)        0.20 

n-Pentyl (118)      <0.10 

Cyclopentyl (119)      <0.10 

Cyclohexyl (120)      <0.10 

Benzyl (121)      <0.10 

2-Methoxyethyl (122)        0.20 

2-Chloroethyl (123)        0.13 

 

 

An analog where the methyl ester group of MP (70) was replaced with a phenyl ring (i.e., 

deoxypipradrol, 124) was evaluated for the uptake of DA and NE in rat synaptosomes by 

O

O

R

HN
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Ferris et al.124 R(-)Deoxypipradrol (124, Figure 25) (IC50 = 0.35 µM) was found to be 10-

fold more potent than S(+)deoxypipradrol (124) (IC50 = 4 µM) in releasing NE from rat 

brain tissue.124 R(-)Deoxypipradrol (124) was 27- and 15-fold more potent than 

S(+)deoxypipradrol (124) and d-threo (2R,2’R) tMP (70), respectively, in inhibiting DA 

reuptake and 15-fold more potent than both S(+)deoxypipradrol (124) and d-threo (2R, 

2’R) tMP (70) in inhibiting NE reuptake in rat brain slices.124 

 

 

 

 

Figure 25. Structures of racemic deoxypipradrol (124) and its optical isomers. 

 

Misra at el.8 evaluated a few other analogs where they replaced the methyl ester of tMP 

(70) with different functional groups and examined their binding affinity at DAT (Table 12). 

All the compounds displayed reduced affinity for DAT except for an ether analog (i.e., 

126), which was found to be nearly equipotent to tMP (70).8 Complete removal of the 

ester of tMP (i.e., 2-benzylpiperidine, 130) reduced the binding affinity at DAT by 85-fold 

(IC50 = 6360 nM) and reduced [3H]DA reuptake potency by 38-fold (IC50 = 8800 nM) as 

compared to tMP (70) (IC50 =75 and 230 nM, binding affinity and [3H]DA uptake, 

respectively).125 Although Kim et al.125 showed the correct structure of 130, their methods 

section showed the synthesis of 2-phenylpiperidine. Furthermore, their melting point was 

not consistent with that mentioned in the literature.126,127 See later discussion of 169. 

HN HNHN

Racemic deoxypipradrol 
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Table 12. DAT binding affinity of tMP analogs with ester group modifications of tMP 
(70).8,125 
 

 

 

-R [3H]WIN 35,428 binding (IC50, nM) 

-CO2CH3 (tMP, 70)   83 

-CH2OH (125)                                448 

-CH2OCH3 (126)                                  97 

-CO2CH2Ph (127)                              1020 

-CH2O(CO)CH3 (128)                                690 

-CO2NH2 (129)                              1730 

-H (130)125                              6360 

 

c. Substitution at the piperidinyl amine  

Misra et al.8 evaluated different aliphatic and aromatic substituents at the piperidinyl 

nitrogen in DAT binding assay.  Converting the secondary amine of the piperidine ring to 

the simplest tertiary amine by replacing -H with -CH3 (i.e., 131) reduced the DAT binding 

affinity by 6-fold. All the nitrogen-substituted analogs and their DAT binding affinities are 

shown in Table 13.  

 

 

HN

R

125-130 
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Table 13. DAT binding affinity of tMP analogs with different piperidine nitrogen 

substituents.8 

 
 
 
 
 
 

-R [3H]WIN 35,428 binding (IC50, nM) 

-H (tMP, 70)   83 

-CH3 (131)                                499 

-CH2CHCH2 (132)                                597 

-CH2CCH (133)                                821 

-CH2Ph (134)                                  53 

-(CH2)2Ph (135)                                678 

-(CH2)3Ph (136)                                267 

-(CH2)4Ph (137)                                205 

-(CH2)5Ph (138)                              1570 

-(CH2)6Ph (139)                                656 
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-R [3H]WIN 35,428 binding (IC50, nM) 

  

                                 

                                   

                                 

                                 

                                 

                                 

                                 

                                 

                                 

 

From the above data it was concluded that substituents at the piperidinyl nitrogen atom 

decrease DAT binding affinity.8 The loss in the potency ranged from 1.3- to 19-fold 

compared to tMP (70), except for analogs containing a benzyl ring i.e. 134, 143, and 145.8 

Having more than one methylene group between the piperidinyl nitrogen atom (i.e., 135-

139) decreased binding affinity.  Moreover, only 4-Cl substitution on the phenyl ring (i.e., 

143) led to a 3-fold increase in binding affinity compared to tMP (70).8 
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d. Piperidine ring modifications 

Analogs with changes in the piperidine ring were synthesized and evaluated in DAT 

binding and DAT reuptake assays by Deutsch et al.128 Analogs with smaller (five-

membered) and larger (seven- and eight-membered) ring systems were synthesized 

(Table 14). Five- (i.e., 156), seven- (i.e., 157), and eight-membered ring (i.e., 158) 

analogs were found to be less potent than tMP (six-membered ring, 70) by a factor of 4, 

2, and 8, respectively in DAT binding assays.128 When the piperidine ring was replaced 

by a morpholine ring (i.e., 159), the binding potency was reduced by 15-fold as compared 

to tMP (70).128 Supporting the binding data, all the analogs synthesized in this study were 

found to be less potent than tMP (70) in a DA reuptake assay.128 
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Table 14. DAT binding and [3DA] uptake data of tMP analogs with modifications of the 
piperidine ring.128  

 

 

 

 

 

 

 

 

Ring modification [3H]WIN 35,428 binding (IC50, nM) [3H]DA uptake (IC50, nM) 

tMP (70) 83 224 

5-membered (156)                         355 885 

7-membered (157)                          197 701 

8-membered (158)                         623                  1590 

Morpholine (159)                       1250                  9930 
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6. Crystal structure of tMP (70) 

Due to the presence of single bonds in the MP (70) structure, it is conformationally flexible 

and it was important to determine which conformation was responsible for its biological 

activity.129 The X-ray crystallographic structure of the HCl salt of l-threo (2S,2’S) tMP (70) 

was successfully obtained by Froimowitz et al.129 and with the help of conformational 

analysis obtained for  both enantiomers of tMP and rMP it was concluded that the (2R,2’R) 

configuration of tMP (70) is the active enantiomer. The conformational analysis of the tMP 

(70) isomer indicated that the carbonyl oxygen of the ester is in close proximity to the 

piperidinyl nitrogen atom and forms an intramolecular hydrogen bond, which helps 

stabilize the tMP conformation.129 The only difference between both enantiomers of tMP 

(70) was a slightly different orientation of the ester group.129 Figure 26 shows the global 

minimum of tMP (70), eMP (70) and the crystal structure of the inactive enantiomer l-threo 

(2S, 2’S) tMP HCl.129 In another study, Froimowitz et al.130 obtained crystal structures of 

five analogs of tMP (70), and all the five structures had similar 3D conformations when 

compared to the global minimum obtained for d-threo (2R, 2R’) tMP. 
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Figure 26. Global minimum of tMP (a) and eMP (b) and the crystal structure of l-threo 
(2S, 2’S) tMP (c).129 
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III. Specific aims 
 

 

Synthetic cathinones are a novel class of drugs of abuse that have drawn considerable 

attention worldwide over the last decade. They are chemically related to cathinone (1), 

which is a naturally occurring stimulant obtained from the plant Catha edulis.3 Although 

the plant might have been characterized in the 19th century, the earliest recorded use of 

it dates back to the 1300s.28 Since then >150 analogs of synthetic cathinones have 

appeared on the clandestine market and their number is growing every year.2 Early 

cathinones were known to act as substrates at the monoamine transporters (DAT, NET, 

and SERT); however, newer synthetic cathinones have diverse mechanism(s) of action.2 

In 2010 Iverson80 reported a popular drug combination called ‘bath salts’ which mainly 

consisted of MDMC (27), MEPH (28) and MDPV (29).  MDPV was the first synthetic 

cathinone found to act as a DAT reuptake inhibitor similar to cocaine (4).86 Due to this 

varying pharmacology and mechanisms of action of synthetic cathinones, it is important 

to study them on a case-by-case basis but this will be time consuming and expensive.  

tMP (70) is another recognized CNS stimulant and has a mechanism of action similar to 

cocaine.109 The SAR of tMP (70) as a DAT blocker has been extensively studied by a 

number of groups over the years.111 There is structural similarity between tMP (70) and 
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certain synthetic cathinones (i.e., 160 where R’ is an extended alkyl group such as n-

propyl).  

 

 

 

 

Compound 161 is a conformationally-constrained analog of 160, and might be considered 

a hybrid of MP (70) and a-PVP. Compound 161 was previously prepared in our laboratory 

and found (at a single concentration of 10 µM) that it behaved as a DAT reuptake inhibitor. 

This prompted the present investigation.  

 

Aim 1. To conduct molecular modeling/docking studies with tMP (70) and hybrid 

analog 161 to determine how they might bind at DAT 

Approach: 

• Generate homology models of hDAT from a dDAT crystal structure 

• Dock tMP (70) and hybrid analog 161 and study their interactions to determine 

their binding modes  

• Conduct Hydrophobic INTeraction (HINT) studies on tMP (70) and analog 161  
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Aim 2. To prepare and examine a series of hybrid analogs (2-benzoylpiperidines) 

and examine their actions at DAT 

Approach: 

• Synthesize a series of hybrid analogs (benzoylpiperidines); specifically, the 

following compounds will be prepared:  

 

 

 

 

 

 

These particular substituents were selected because of the difference in their 

physicochemical properties (that could be useful if QSAR studies were to be subsequently 

conducted), and they were studied for their DAT reuptake potency in the tMP series8,9 

and displayed a range of potency. 

• Determine functional activity of these hybrid analogs at hDAT by live-cell imaging  
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R = -H, 161 
R = -CH3, 162 
R = -C2H5, 163 
R = -Cl, 164 
R = -Br, 165 
R = -OCH3, 166 
R = -CF3, 167 
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Aim 3. To determine the necessity of the carbonyl oxygen atom of 161 for DAT 

reuptake inhibition 

Approach: 

• Synthesize the descarbonyl analog, 169, of the hybrid parent 161  

(Analog 169 should not be confused with 130; analog 130 had the correct structure 

in Ref. 125 however the experimental section showed the synthesis of 2-

phenylpiperidine; therefore, to avoid confusion, we are using a different 

identification number. That is, 169 ≠ 130). 

 

 

 

 

• Conduct docking studies on descarbonyl analog 169 at hDAT homology models 

to determine if it has a binding pose similar to 161 

• Determine the functional activity of the descarbonyl analog 169 at hDAT by live-

cell imaging  
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IV. Results and discussion 

 
 
 
Aim 1. To conduct molecular modeling/docking studies with tMP (70) and hybrid 

analog 161 to determine how they bind at DAT 

A. hDAT homology modeling studies  

Knowing that tMP (70) is a reuptake inhibitor of DAT119 we investigated the interactions 

of tMP (70) with DAT on a molecular level. Analog 161 was previously tested in our 

laboratory at a single concentration of 10 µM and was found to be a DAT reuptake 

inhibitor.131 It was of interest to investigate if tMP (70) and hybrid analog 161 have any 

common interactions at DAT by conducting molecular modeling studies. DAT belongs to 

the SLC6 family of transporters and the crystal structure of hDAT is not available; 

therefore, we utilized the crystal structure of the Drosophila melanogaster dopamine 

transporter (dDAT) co-crystallized with cocaine (4) (PDB ID: 4XP4) as our template.132 

We generated one hundred homology models using MODELLER 9.10 and compared it 

with the crystal structure of dDAT using SybylX 2.1.1 and determined that they had a root 

mean square deviation (RMSD) of 0.183 Å. Figure 27 shows overlapping structures of (a) 

the dDAT crystal structure (light pink) and the homology model (blue-white) and (b) a 

close-up view of the binding pocket. The amino acid residues for our homology model are 

labeled in parenthesis. Almost all the residues in the binding pocket seem to overlap.  
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Figure 27. (a) Overlapping structures of the dDAT crystal structure (light pink) (PDB ID: 
4XP4, 2.8-Å resolution) and a homology model of hDAT (blue-white) (b) a close-up of the 
binding pocket with the residues of the crystal structure (light pink colored capped sticks) 
and the homology model (blue-white colored capped sticks). The residues of our model 
are in parenthesis. 

 

B. Construction and alignment of hDAT models 

The sequence of the dDAT structure was obtained as a FASTA file from the Protein 

Databank (PDB ID: 4XP4) and the sequence for the hDAT was obtained from the 

Universal Protein Resource (UniProt) database using the accession code Q01959. Both, 

the dDAT and hDAT sequences were aligned using Clustal W 2.0133 (Figure 28). Due to 

a lack of corresponding residues, the first 57 residues of the N-terminus, the last 20 

residues of the C-terminus, and 12 residues of extracellular loop 2 were not modelled. 

The two sodium ions and a chloride ion were modelled in the binding site since they might 
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affect the overall structure of the transporter.  

 

Figure 28. Clustal W 2.0-based sequence alignment of the dDAT crystal structure (PDB 
ID: 4XP4) and hDAT (UniProt accession code Q01959). The highlighted boxes represent 
transmembrane (TM) helices. Symbols below each sequence indicate the degree of 
amino acid conservation: ‘*’ for fully conserved residue, ‘:’ for strong conservation, ‘.’ for 
weak conservation, and no symbol indicates non-conserved residues.  
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C. Validation  

In order to support our studies, we docked cocaine (4) to one hundred homology models 

generated for hDAT and validated the interactions we obtained with the interactions 

observed in the dDAT crystal structure co-crystallized with cocaine. The aspartate residue 

(Asp79) was used to define a 10-Å binding pocket using the docking software GOLD suite 

5.6.1.134 In our model, cocaine was found to have a hydrogen bond between the tropane 

nitrogen atom and Asp79 residue (Figure 29a) similar to that of the crystal structure.132 

There was also an edge-to-face interaction with the benzyl ring of cocaine and Phe326 

(Figure 29b).  

 

 

Figure 29. a. Structure of cocaine (yellow) docked in the binding site of our hDAT model. 
The red broken line shows the hydrogen bond between the nitrogen atom of cocaine and 
Asp79. b. A side-view of the binding site showing an edge-to-face interaction between 
the phenyl ring of cocaine and Phe326.  
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A Ramachandran plot of a hDAT model, having the highest GOLD score, was obtained 

using PROCHECK analysis (Figure 30). The Ramachandran plot uses torsion angles to 

describe protein conformation, and the amino acids are divided into two large regions 

representing a-helices and b-sheets, and a smaller region representing the backbone 

conformation.135,136 The colors in the plot show if the region is favored or not, e.g. most 

favored (red), additionally allowed region (yellow), generously allowed region (light 

yellow), and disallowed region (white). For our hDAT model 96.7% of the amino acids 

were in the most favored region, and 3.3% in the additionally allowed region. Three 

glycine residues (Gly258, Gly500, and Gly585) were found in the disallowed region; 

however, they were not near the binding pocked of our hDAT model. Gly258 and Gly500 

were found in the extracellular loop, whereas Gly585 was found in the C-terminus; 

therefore, they would have no effect on our docking studies. We carried out our docking 

studies using these validated hDAT models.  
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Figure 30. Ramachandran plot of our optimal hDAT model. Phi (X-axis) and Psi (Y-axis) 
represent backbone conformation angles of amino acid residues. Three glycine residues 
were found in the disallowed region (white) of the plot; however, they were not in the 
proximity of the binding pocket.  
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D. Docking studies with tMP (70) and hybrid analog 161 

tMP (70) and the hybrid analog 161 were sketched using SybylX 2.1.1, energy-minimized 

using the Tripos Force Field, and then docked ten times in each of the one hundred 

models of hDAT using the Asp79 residue to define the binding pocket.  For tMP (70), two 

poses were obtained, and in pose 1 the nitrogen atom of the piperidine ring was found to 

be involved in a bifurcated interaction with Asp79 and Ser422, whereas the carbonyl 

oxygen atom formed a hydrogen bond with the Ser422 (Figure 31). Figure 31a shows all 

the interactions between tMP (70) (pose 1) and the hDAT model and Figure 31b shows 

tMP (70) in a surface format to give an idea of how it occupies the binding pocket. 

 

 

a 

Tyr156 
 Ser422 

Asp79 

 Val152 

Phe320 

Phe76 

Phe326 

Ala81 



www.manaraa.com

   

 

 82 

 

Figure 31. a. Pose 1 of tMP (magenta) (70) docked at the binding site of our hDAT model 
(blue-white). The nitrogen atom of tMP (70) forms a bifurcated interaction with Asp79 and 
Ser422, and the carbonyl oxygen atom of tMP (70) forms a hydrogen-bond interaction 
with Ser422 (shown in red broken lines). Other hydrophobic residues such as Phe 76, 
Ala81, Val152, Phe320 and Phe326 are shown in blue-white capped sticks. b. tMP (70) 
as a surface representation, showing how it occupies the binding pocket.  

 

 Pose 2 of tMP (70) was obtained in our docking studies, and only one hydrogen bond 

was found between the nitrogen atom of the piperidine ring and Asp79 instead of the 

bifurcated interaction seen in pose 1. Due to the flexible nature of the ester group of tMP 

(70), it was seen that there was no hydrogen bond between the carbonyl oxygen atom 

and Ser422. Figure 32 shows the pose 2 of tMP (70) docked in our homology model.  
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Figure 32. Pose 2 of tMP (70) (wheat color) docked at the binding site of our hDAT 
homology model. The nitrogen atom forms a single hydrogen bond with the Asp79 and 
there is a loss of a hydrogen bond between the carbonyl oxygen atom and Ser422.  

 

The crystal structure of tMP (70) suggested that there is formation of an intramolecular 

hydrogen bond between the piperidine nitrogen atom and the carbonyl oxygen atom of 

the ester.130 Pose 1 and pose 2 were overlaid to see the differences between the two 

comformations and the distance between the nitrogen atom and the carbonyl oxygen 

atom was measured in PyMOL 2.0.7. The distances were found to be 3.0 Å for pose 1 

and 3.8 Å for pose 2 (Figure 33).  Pose 1 of tMP (70) seems more likely to form an 

intramolecular hydrogen bond interaction (since it is <3.5 Å) and has the necessary 
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interaction as previously studied by Schmitt and Reith;137 therefore, it might be considered 

more consistent with the crystal structure. All further studies mentioned below were 

conducted using pose 1 of tMP (70).  

 

Figure 33. Pose 1 (magenta) and pose 2 (wheat) of tMP (70) overlaid; the distance 
between the piperidine nitrogen atom and carbonyl oxygen atom of the ester is shown is 
black broken lines.  
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The parent hybrid analog 161 was also docked in a similar fashion at the various hDAT 

models and it was found that, like tMP (70), the nitrogen atom of analog 161 did not form 

a bifurcated interaction. However, there was a hydrogen bond interaction between the 

nitrogen atom of 161 and Asp79 and carbonyl oxygen atom of 161 and Ser422. Figure 

34a. shows analog 161 docked in the hDAT model with hydrogen bond interactions, and 

Figure 34b. shows analog 161 in space-filling spheres.  
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Figure 34. a. Analog 161 (forest green) docked in our hDAT model (blue-white). The 
nitrogen atom and the carbonyl oxygen atom of 161 forms a hydrogen bond interaction 
with Asp79 and Ser422, respectively. Other hydrophobic residues such as Phe76, Ala81, 
Val152, Phe320 and Phe326 are shown in blue-white capped sticks. b. Analog 161 
represented as space filling spheres in the binding pocket.  

 

E. Hydropathic INTeraction analysis 

Hydropathic INTeraction (HINT) analysis138,139 was performed in order to quantify the 

interactions seen in our docking studies. HINT is a program that primarily calculates the 

hydrophobic environment of a ligand and a protein.139 HINT analysis takes both favorable 

and unfavorable interactions into account and provides a score for all the observed 

interactions; a high positive score suggests favorable interactions between ligand and 

protein.139 
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HINT analysis was performed using Sybyl 8.1. Both tMP (70) and 161 were found to have 

positive HINT scores (575 and 995, respectively). Table 15 shows the breakdown of the 

HINT scores for tMP (70) and 161 based on hydrophobic and polar interactions and Table 

16 shows the breakdown of the polar interactions with respect to Asp79 and Ser422.  

 

Table 15. Table showing distribution of favorable (green) and unfavorable (red) HINT 
score for tMP (70) and analog 161.  
 

 
Ligand 

Total 
HINT 
score 

 
Favorable score 

 
Unfavorable score 

  Hydrogen 
bond 

Acid/ 
Base 

Hydrophobic Acid/ 
Acid 

Base/ 
Base 

Hydrophobic
/Polar 

tMP (70) 
(Pose 2) 

575 1245 933 441   -79 -912 -1053 

 

   161 995 1007 761 482 -108 -329   -817 

 
 
 
 
Table 16. Polar HINT score breakdown of tMP (70) and analog 161 based on Asp79 and 
Ser422 residues. 
 

Ligand Total 
polar 
score 

Interacting atom 
of the ligand 

Polar 
interactions with 

Asp79 

Polar 
interactions with 

Ser422 

tMP (70) 

(Pose 2) 

2178 Nitrogen atom 1188    27 

Carbonyl oxygen - 192 
 

161 1768 Nitrogen atom   982 - 

  Carbonyl oxygen -   38 
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F. Discussion  

tMP (70) is an FDA approved drug for the treatment of ADHD and it primarily acts at the 

dopamine transporter as a reuptake inhibitor.111 Earlier synthetic cathinones were known 

to act as substrates at the monoamine transporter; however, newer cathinones act as 

DAT reuptake inhibitors.2 It is known that having a bulky a-side chain (e.g. n-propyl of a-

PVP) converts synthetic cathinones from releasing agents to reuptake inhibitors.2 

Therefore, we designed a series of hybrid analogs where we ligated the a-side chain of 

a-PVP to the terminal amine to resemble the piperidine ring of tMP (70), and the ester 

group of tMP (70) was replaced with a carbonyl oxygen atom giving us our parent hybrid 

analog 161. Analog 161, which was previously synthesized in our laboratory, was found 

to be a DAT reuptake inhibitor in a preliminary assay, at a single (10 µM) concentration.131 

 

Using the dDAT crystal structure co-crystallized with cocaine as a template, we created 

a population of one hundred homology models of hDAT. We validated our models by 

docking cocaine, and our final model had interactions similar to those seen in the dDAT 

crystal structure. We conducted a PROCHECK analysis and obtained a Ramachandran 

plot, and 96.7% of the amino acids were found in the favored region and only three glycine 

residues  were found in the disallowed region. The binding pocket of DAT is hydrophobic 

in nature and is surrounded by hydrophobic amino acids such as Phe76, Ala81, Val152, 

Phe320 and Phe326.  

 

After validating our model, we docked tMP (70) and hybrid analog 161, previously 

sketched in using SybylX 2.1.1, ten times in one hundred models. Two poses were 
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obtained for tMP (70) in our docking studies and both had different poses due to the 

flexible nature of the tMP structure. In pose 1, the piperidine nitrogen atom of tMP was 

found to form a bifurcated interaction with Asp79 and Ser422 and the carbonyl oxygen 

atom of the ester group of 70 formed an additional hydrogen bond with Ser422. On the 

contrary, for pose 2, there was only one hydrogen bond between the piperidine nitrogen 

atom and Asp79, and the interaction between the carbonyl oxygen atom and Ser422 was 

lost. When pose 1 and pose 2 of tMP was overlaid, it was seen that the phenyl ring and 

the ester chain was flipped and this might have led to the loss in the interaction with 

Ser422. Froimowitz et al.130 have shown that the intramolecular hydrogen bond between 

the piperidine nitrogen atom and the carbonyl oxygen atom stabilizes the crystal structure 

of tMP (70). The distances between the piperidine nitrogen atom and the carbonyl oxygen 

atom were measured and it was found that pose 1 (3.0 Å) had an acceptable distance to 

form a hydrogen bond. Pose 1 had all the favorable interactions with the hDAT model and 

therefore, pose 1 was selected for our HINT studies.  

 

For analog 161, the piperidine nitrogen atom did not form a bifurcated interaction with Asp 

79 and Ser422; instead, one hydrogen bond interaction was seen between the nitrogen 

atom and Asp79. The carbonyl oxygen atom of 161 was also found to have a hydrogen 

bond interaction with Ser422. HINT analysis was performed on tMP (70) and analog 161 

and both were found to have a positive score (575 and 995, respectively). Even though 

tMP had a higher total polar score, its total HINT score was found to be lower than that of 

161 and this might be attributed to greater hydrophobic/polar clashes seen for tMP (70).  
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Due to the loss of one interaction in our hybrid analog 161, as compared to tMP (70), in 

our homology modelling studies, the prediction was that analog 161 would be less potent 

as a DAT reuptake inhibitor than tMP (70). Hybrid analogs were synthesized and tested 

for their functional activity and this is discussed in Aim 2.  
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Aim 2. To prepare and examine a series of tMP/cathinone hybrid analogs (i.e., 2-

benzoylpiperidines) and examine their actions at DAT 

We designed our hybrid molecules based on MP structures due to four important reasons: 

i. tMP and cathinone have some structural resemblance (vide supra) 

ii. Certain cathinone analogs behave as DAT reuptake inhibitors similar to cocaine  

iii. tMP, another DAT reuptake inhibitor, is widely abused  

iv. Extensive SAR and SAFIR studies have been conducted on MP, but little is known 

about cathinone SAR 

 

We aim to conduct parallel SAR studies between tMP (70) and synthetic cathinones, 

which means, ‘if parallel changes in the structure of hybrid analogs result in parallel shifts 

in activity, both the tMP series and the hybrid analog series might be binding at DAT in a 

similar manner.’ The concept is an extension of the Portoghese hypothesis as cited by 

Foye and Lemke.140 

 

In a study conducted by Misra et al.8 80 different analogs of tMP (70) were synthesized, 

of which twenty-nine analogs had changes only in the phenyl ring, and their DAT binding 

affinity was measured. We synthesized a series of eight analogs, of which seven analogs 

were monosubstituted at the 4-position of the phenyl ring and one was a 3,4-disubstituted 

analog (i.e. 3,4-dichloro). We chose the particular set of substituents due to differences 

in their physicochemical properties and their wide range in  DAT binding affinity as shown 

by Misra et al.8 for their corresponding tMP analogs. 
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All synthesized compounds were examined as DAT reuptake inhibitors to determine their 

IC50 values and later examined as releasing agents (at one concentration) to confirm that 

these hybrid analogs (161-168) act only as reuptake inhibitors, and not as releasing 

agents, at DAT. The synthesis of these compounds is outlined below.  

 

 

 

 

 

 

 

 

 

A. Synthesis 

Since our parent hybrid analog 161 was previously synthesized in our laboratory by 

Sakloth et al.,131 its exact synthetic procedure was followed. However, during this attempt 

the desired compound was not obtained. Scheme 3 shows the synthetic procedure that 

was attempted first, but failed, and the scheme that was eventually successful in obtaining 

analog 161. For our first attempt, we used pipecolic acid (170) as our starting material 

and converted it to pipecolic acid chloride 171 using PCl5 and methylene chloride at 0 °C. 
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The obtained acid chloride (i.e., 171) was analyzed using melting point (mp) and IR 

spectroscopy, and was subsequently used in a Friedel-Crafts acylation reaction in the 

presence of anhydrous benzene and AlCl3. The reaction mixture was stirred at room 

temperature for 18 h and then at 60 °C for 24 hours. During this heating, the reaction 

mixture started to turn black in color and eventually it solidified. More solvent was added 

to achieve dissolution, but it remained solid. IR spectroscopy was performed on the black 

solid and it did not display any carbonyl peaks. The product was not identified.  After this 

failed attempt, another procedure was followed where 2-benzoylpyridine (172) (Scheme 

3) was first reduced to phenyl (2-piperidinyl)methanol (173) using AcOH and Pt/C on a 

Parr hydrogenator. The intermediate alcohol (i.e., 173) obtained was then oxidized using 

Jones reagent to obtain the desired final product 161 and was converted to its 

hydrochloride salt. The oxidation reaction and the preparation of Jones reagent was 

accomplished using the procedure described for the synthesis of MDPV by Kolanos et 

al.97 We are unable to determine why the earlier preparation failed in our hands. 

Nevertheless, the current product had a similar mp as the product earlier described by 

Sakloth.131 
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Scheme 3a. Synthesis for parent hybrid analog 161. 

 

 

 
 
 
 
 

 
 
 
 
 
 
 
 

 

aReagents and conditions: a. PCl5, CH2Cl2; b. benzene, AlCl3, 40 °C; c. AcOH, 5% Pt/C, 
30-40 psi, rt, 6h; d. Jones reagent, 0 ⁰C, 1h, rt, 18h. 

 

Analogs 162 and 163 (Scheme 4) were prepared by a one-pot Friedel-Crafts acylation 

reaction using N-Boc-pipecolic acid (174) as starting material. Anhydrous toluene and 

ethylbenzene were used as the solvent, respectively. Thionyl chloride (SOCl2) and DMF 

were used to obtain the acid chloride in situ at 0 °C and as soon as the ice-bath was 

removed, the color of the reaction mixture changed from bright orange to black and, over 

the next 30 min, the reaction mixture turned into a black solid which had the appearance 

of a charred solid. IR spectroscopy was performed and no carbonyl peaks were detected; 

moreover, the carbonyl peaks that were seen in the starting material also disappeared. 

For our next approach we eliminated DMF and carried out a neat reaction using SOCl2 

O

N
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HN

O
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and the starting material (i.e. 174); however, we obtained the same result. With two failed 

procedures, we changed our chlorinating agent and used PCl3 instead of SOCl2. The 

reaction was carried out in an N2 atmosphere and IR spectra were obtained on the 

reaction mixture where we noticed the presence of an acid chloride peak. Having 

confirmed the presence of the desired acid chloride, we added freshly sublimed AlCl3 at 

0 °C and allowed the reaction mixture to stir overnight. Thin-layer chromatography (TLC), 

to check the progress of the reaction, displayed a new product.  Scheme 4 shows the 

synthetic schemes that failed and the one that was eventually successful.  

 

Scheme 4a. Synthesis of analogs 162 and 163.  

 

 

 

 

 

 

 

aReagents and conditions: a. SOCl2, DMF, solvent for 162 was toluene and for 163 was 
ethylbenzene; b. SOCl2 , solvent for 162 was toluene and for 163 was ethylbenzene; c. 
PCl3, 0 °C, solvent for 162 was toluene and for 163 was ethylbenzene, rt, 16-24 h.  
 

 

The same procedure shown in Scheme 4c was carried out to obtain analogs 164 and 

165. For analog 164 (Scheme 5), we used N-Boc-pipecolic acid (174) and anhydrous 

bromobenzene as starting materials and obtained our acid chloride using PCl3; however 

N

OHO

Boc

a 

b 
O

HN

R

c 

162 R = -CH3 
163 R = -C2H5 

174 
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when AlCl3 was added, and the reaction was carried out at room temperature, no progress 

in the reaction was seen after 2 h. The reaction mixture was allowed to stir for 48 h and 

TCL analysis showed no progress. Halogens are ortho and para directing but they are 

also deactivating groups and, therefore, for our next attempt, we decided to reflux the 

reaction instead of letting it stir at room temperature. While monitoring the reaction, we 

saw some change on TLC analysis; however, on comparing TLC spots it was found that 

the Boc group of the N-Boc-pipecolic acid (174) was deprotected, giving us pipecolic acid 

(170). To tackle this deprotection issue, we protected the nitrogen atom with a formyl 

group which is stable against AlCl3.141 Pipecolic acid (170) was protected using formic 

acid and acetic anhydride, which generates acetic formic anhydride in situ. The N-formyl-

pipecolic acid was used for the one-pot Friedel-crafts reaction and analog 176 was 

successfully obtained. The formyl group was removed by refluxing 176 in a mixture of 

HCl/EtOH. Analog 165 has a bromine atom at the 4-position, and therefore the same 

procedure was followed using bromobenzene giving us the final product 165 (Scheme 5).  
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Scheme 5a. Synthesis of analogs 164 and 165.  

 

 
 
 
 
 

 
 
 
 
 

 

aReagents and conditions: a. (CH3CO2)2O, HCOOH, rt, 1h; b. (i) p-substituted benzene, 
PCl3, 60 ⁰C, 2h, (ii) AlCl3, rt, 16-18h; c. HCl/EtOH, reflux, 3h. 
 
 
The trifluoromethyl group is an EWG and a meta directing substituent and, therefore, the 

Friedel-Crafts acylation approach should mostly give us a 3-substituted analog. Hence, 

we used an organo-lithium approach to synthesize analog 167, previously reported by 

Thai et al.142 for similar compounds. Scheme 6 shows an outline of the reaction. The 

reaction involved the synthesis of two intermediates (i.e., a Weinreb amide and an 

organolithium compound) and, eventually, reacting them at -23 ⁰C (in a mixture of dry ice 

and CCl4). For our first intermediate, we used N-Boc-pipecolic acid as starting material, 

which was reacted with N,O-dimethylhydroxylamine hydrochloride, TEA, and a coupling 

agent (benzotriazol-1-yloxy)tris(dimethylamino)phosphonium hexafluorophosphate 

(BOP) to give us a Weinreb amide (i.e. 178). To obtain the organolithium intermediate, 4-

bromo trifluoromethylbenzene (180) was reacted with 2.5 M n-BuLi at -40 ⁰C (in a mixture 

of dry ice and acetonitrile). For the final step, the organolithium reagent generated in situ 
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was added in a dropwise manner to a stirred solution of 178 in anhydrous ether to give 

compound 167. 

 

Scheme 6a. Synthesis of analogs 166, 167, and 168.  

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

aReagents and conditions: a. N,O-dimethylhydroxylamine hydrochloride, TEA, BOP, rt, 
3h;  b. 2.5 M n-BuLi in hexane, -40 ⁰C, 3h; c. Et2O, -23 ⁰C. 
 
 
Scheme 4c and 5 were used in an attempt to synthesize analog 166, however both 

synthetic schemes failed to provide the desired product. Therefore, Scheme 6 outlined 

above, was used to synthesize analogs 166 and 168 using 4-bromoanisole and 1-bromo-

3,4-dichlorobenzene, respectively, as starting material to give an organolithium 

intermediate. The advantages of Scheme 6 over Schemes 4 and 5 were the ease of 
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synthesis, fewer impurities, and fewer by-products, and the final products were easier to 

purify and recrystallize. 

 
B. APP+ uptake assay  
 
After the synthesis of our desired targets, DAT reuptake data were obtained. As 

preliminary data had shown that the parent analog 161 acted as a DAT reuptake inhibitor, 

and it was also known that having a bulky a-side chain shifts the activity of compounds 

from DAT releasers to DAT reuptake inhibitors,2 we predicted that all the compounds in 

our current series would also be reuptake inhibitors.  Functional activity studies were 

conducted in Dr. Jose Eltit’s laboratory in the Department of Physiology and Biophysics, 

School of Medicine, Virginia Commonwealth University.  

 

APP+ uptake assays were performed in human embryonic kidney (HEK293) cells which 

stably expressed hDAT. Live-cell imaging was conducted for this assay using 

epifluorescence microscopy. The assay was performed for compounds that acted as 

reuptake inhibitors at the monoamine transporters. APP+ is a known DAT substrate,143 

and was used as a positive control. The test compounds, if reuptake inhibitors, compete 

with the APP+ signal and the potency of the test compound is directly proportional to the 

inhibition of the APP+ signal. A preliminary APP+ uptake assay was first conducted at two 

concentrations (1 and 10 µM) in order to determine the potency of the hybrid analogs, 

and then complete dose-response curves were obtained for each of the hybrid analogs 

using six different concentrations. Analogs were tested in triplicate at each concentration 
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and the experiments were repeated on a separate day to give reliable data. Figure 35 

shows the raw data of control APP+ at 3 µM (a) and our parent analog 161 at 1 µM (b). 

 

 

Figure 35. Raw traces of APP+ (a, 3 µM) and analog 161 (b, 1 µM) in the APP+ uptake 
assay using live-cell imaging.  
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Using the DsRed signal, the focal plane of monolayered transfected cells was identified, 

and then the APP+ signal was measured using a wavelength of 460 nm for excitation and 

540 nm for emission.143,144 The data were analyzed using Fiji (Image J) 2.0 and the dose-

response curves were plotted using GraphPad Prism 8.0. Figure 36 shows all the dose 

response curves of our hybrid analogs along with tMP (70), and cocaine (4), which were 

tested for comparison; and Table 17 shows the IC50 values of the above-mentioned 

compounds.  
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Figure 36. Dose-response curves of our benzoylpiperidine analogs (161-168), tMP (70), 
and cocaine (4) in an APP+ uptake assay at hDAT. 
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Table 17. IC50 values of hybrid analogs 161-168, tMP (70), and cocaine (4) in  an APP+ 
uptake assay at hDAT.   
 
 
 
 
 
 
 
 
 
 
 
 
Ligand -R -R’ IC50 (nM) ± S.E.M. pIC50 

161 -H -H     1080 ± 190 5.96 

162 -CH3 -H       380 ± 80 6.42 

163 -C2H5 -H     6900 ± 1900 5.16 

164 -Cl -H       520 ± 60 6.28 

165 -Br -H       590 ± 100 6.22 

166 -OCH3 -H     2340 ± 400 5.63 

167 -CF3 -H   14300 ± 4000 4.84 

168 -Cl -Cl         47 ± 6 7.32 

tMP (70)           72 ± 10 7.14 

Cocaine (4)         170 ± 20 6.76 
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C. Intracellular Ca2+ determination  

Voltage-gated Ca2+ channels are important because they translate an electric signal in 

the plasma membrane into changes in cytosolic Ca2+ signals.145 At rest, the intracellular 

concentration of Ca2+ is low (~100 nM) and the leak current is balanced by the efflux of 

Ca2+ through high-affinity, low-capacity plasma membrane Ca2+ ATPase (PMCA); 

however, upon depolarization the Ca2+ channel opens and Ca2+ concentration might 

increase by 10-100-fold as reported by Steele and Eltit.145 Normally, the extracellular 

concentration of Ca2+ is approximately 10000-fold greater than the intracellular Ca2+ 

concentration (i.e., ~2 mM) and the negative cell membrane potential results in a large 

electrochemical gradient. This leads to a strong influx of Ca2+ when the channel is open. 

During depolarization, the intracellular Ca2+ concentration is directly proportional to the 

number of Ca2+ channels that are open, as reported by Steele and Eltit.145 As the 

intracellular Ca2+ concentration increases, low-affinity, the high-capacity Na+/ Ca2+ 

exchanger (NCX) is activated, in order to balance the high Ca2+ concentration.145 During 

repolarization the majority of the open-state Ca2+ channel shifts to the closed-state, which 

decreases the net influx of Ca2+ and efflux through NCX decreases intracellular Ca2+ to 

the initial resting stage.145 Figure 37 describes the scheme of Ca2+ fluxes in cells 

expressing DAT and voltage gated Ca2+ channels. The image is adapted from Steele and 

Eltit.145 
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Figure 37. Ca2+ fluxes scheme in HEK293 cell expressing hDAT and voltage-gated Ca2+ 

channel. a. At rest, the Ca2+ concentration is low and the influx due to the leak current is 
balanced by PMCA. b. DAT substrate causes depolarization resulting in opening of Ca2+ 

channels resulting in influx of Ca2+. c. Ca2+ channel starts getting deactivated and the 
influx of Ca2+ reduces, the excess of intracellular Ca2+ is effluxed by NCX. d. Removal of 
the substrate results in repolarization, closing of Ca2+ channels and eventually reaching 
the resting stage a. Adapted from Steele and Eltit.145 
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We co-expressed hDAT with a voltage-gated Ca2+ channel in order to evaluate our hybrid 

analogs for their release potential. HEK239 cells stably expressing hDAT were co-

expressed with Cav1.2 in combination with its auxiliary subunits b3, a2d and a fluorescent 

protein EGFP. The cells were loaded with Ca2+-sensitive Fura-2 for 40 min and then 

washed twice with the imaging solution (IS). The measurements were done using an 

excitation wavelength of 340 nm and the EGFP fluorescence were measured at 490 nm. 

DA was used as control for this assay and as we knew that our hybrid analogs were DAT 

reuptake inhibitors, we evaluated our compounds only at one concentration (10-times 

their IC50). This was done to confirm that the hybrid analogs only acted as reuptake 

inhibitors and not as releasers or have any mixed actions at DAT. Analogs 163 and 167 

were not evaluated in the Ca2+ assay due to their low potency in the APP+ assay. Figure 

38 shows the trace of all the hybrid analogs in the Ca2+ assay with DA used as the 

standard.  
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Figure 38. Graphs obtained from the Ca2+ assay. The analogs were tested at 
approximately 10-times their IC50. The first peak represents a DA (10 µM) signal followed 
by a wash (30 s), then the corresponding analog was perfused for 30 s (shown in blue), 
followed by a mixture of the analog and 10 µM DA for 5 s. The second peak shows that 
the hybrid analogs successfully blocked hDAT resulting in weaker signals of DA as 
compared to the first signal.  
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All hybrid analogs (161-168) were found to be reuptake inhibitors and none behaved as 

substrates at DAT. Of the hybrid analogs tested, the 3,4-dichloro analog (i.e., 168) was 

the most potent, and 1.5-fold more potent than tMP (70). The order of potency for our 

series was: 3,4-dichloro (168) > 4-CH3 (162) > 4-Cl (164) ~ 4-Br (165) > 4-H (161) > 4-

OCH3 (166) > 4-C2H5 (163) > 4-CF3 (167). A comparison between DAT reuptake 

potencies9 and radioligand binding affinity8 for 25 tMP analogs (2-, 3-, and 4-substituted) 

was made, and a significant correlation was obtained (r = 0.98) between the two data sets 

(Figure 39). This indicated that DAT functional potency of the tMP analogs parallels their 

binding affinity, and this allowed us to use the binding data of tMP series as a surrogate 

for their functional data. Therefore, we compared our APP+ uptake assay data with the 

literature binding data for the corresponding analogs. We used the binding data, since the 

functional data for 4-C2H5 tMP and 4-CF3 tMP were not available. For the eight 2-

benzoylpiperidines examined, there was a significant relationship between their potencies 

and the DAT binding affinity of their corresponding tMP analogs (r = 0.91, n = 8) (Figure 

40). The obtained results suggested that the SAR of tMP (70) might be applicable to the 

synthetic cathinones.  
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Figure 39. Relationship between the reported DAT transporter binding data of tMP 
analogs (X-axis)8 and their [3H]DA reuptake data (Y-axis).9 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 40. Correlation between the binding data of tMP analogs8 (X-axis) and APP+ 
uptake assay data (Y-axis) for the corresponding 2-benzoylpiperidines. 
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D. Discussion  

We designed a series of eight hybrid analogs based on the structure of tMP (70) and a-

PVP. tMP (70) was chosen for the current study as it acts as a DAT reuptake inhibitor, it 

shares structural similarity with synthetic cathinones, it is widely abused, and its SAR has 

been extensively studied. From previous studies conducted in our lab, it was found that 

having an extended a-side chain converts a cathinone analog from a substrate to a 

reuptake inhibitor at DAT.2 Following this lead, we ligated the a-side chain of a-PVP to 

the terminal amine making a piperidine ring similar to the tMP structure. We replaced the 

methyl ester of the tMP with a carbonyl group, which gave us our first hybrid analog (2-

benzoylpiperidine).  

 

Our hypothesis, for the current study, was to conduct parallel SAR studies between the 

tMP and the hybrid series, and if parallel changes in the structure of the hybrid analogs 

resulted in a parallel shift in activity, both the tMP series and the hybrid analog series 

might be binding at DAT in a similar manner. We focused on 4-substituted analogs for the 

present study and synthesized a series of eight compounds. We chose these particular 

substituents because they had different physicochemical properties; their tMP analogs 

had been already studied, and they displayed a range in potencies.8,9  

 

For synthesis we used a Friedel-Crafts acylation reaction, with Boc protected pipecolic 

acid for analogs 162 and 163, and N-formyl protected pipecolic acid for analogs 164 and 

165, as our starting material. Surprisingly, using SOCl2 as our chlorinating agent did not 

give us our desired acid chloride and therefore we used PCl3 instead. Analogs 166, 167, 
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and 168 were synthesized using an organolithium reaction and that reaction was found 

to give few by-products and the crude product was easier to purify and recrystallize as 

compared to the Friedel-Crafts acylation reaction products. Analog 161 was synthesized 

by reduction of 2-benzoylpyridine (172) followed by oxidation of the alcohol intermediate 

(i.e., 173) using Jones reagent.  

 

Analog 161 was previously synthesized and evaluated in our lab and at a single 

concentration it was found to act as a DAT reuptake inhibitor. APP+ uptake studies were 

conducted on our analogs using HEK293 cells stably expressing hDAT in live-cell 

imaging. Preliminary studies, at two concentrations (1 and 10 µM), were conducted on 

the hybrid analogs and, based on the results, complete dose-response curves were 

obtained. The 3,4-dichloro analog (168, IC50 = 47 nM) was found to be the most potent 

and the 4-trifluoromethyl analog (167, IC50 = 14300 nM) was found to be the least potent. 

Analog 168 was the only compound that was found to be more potent than tMP (70) in 

the APP+ uptake assay.  

 

The hybrid analogs were also evaluated in intracellular Ca2+ imagining to confirm their 

mechanism of action. Intracellular Ca2+ imagining was conducted for the monoamine 

transporter substrate and this would tell us if our analogs have any substrate activity or 

any mixed action. The analogs were evaluated only at a single concentration (10 x IC50) 

and none of the analogs were found to have substrate activity. 
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The hybrid analogs in the present study were found to be DAT reuptake inhibitors. We 

carried out a comparison between the DAT reuptake functional potency and radioligand 

binding affinity for 25 tMP analogs with substituents at the 2-, 3-, and 4-position of the aryl 

ring. We obtained a correlation coefficient (r) of 0.98 between the two data sets, which 

suggested that the functional potency of tMP analogs parallels their binding affinity at 

DAT. Therefore, we were able to correlate our APP+ data with the literature binding data 

for tMP (70), and obtained a high correlation (r = 0.91). These studies suggested that the 

SAR of tMP (70) analogs could be applicable to the present cathinone-related compounds 

as DAT reuptake inhibitors.  
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Aim 3. To determine the necessity of the carbonyl oxygen atom of synthetic 

cathinones for DAT reuptake inhibition 

Many investigators have conducted SAR studies on the ester group of tMP (70) with 

various alkyl and aryl substituents.8,123,124 DAT binding studies conducted by Misra et al.8 

showed that the ester group of tMP (70) can be replaced by other groups such as a 

methoxymethyl (i.e., 126), hydroxymethyl (i.e., 125), and an amide (i.e., 129). To 

determine the influence of the carbonyl oxygen atom on the action of hybrid analog 161, 

we synthesized the descarbonyl analog 169, to give an amphetamine-type analog. We 

conducted docking and HINT studies on analog 169 using our hDAT homology model 

and later evaluated the DAT functional activity of 169 in an APP+ uptake and intracellular 

Ca2+ assay. 

 

A. Docking studies on analog 169 

As described in the results of Aim 1, we sketched analog 169 in SybylX 2.1.1 and docked 

it ten times in one hundred hDAT homology models. We found the presence of a hydrogen 

bond between the piperidine nitrogen atom and Asp79 similar to what we found with 

parent analog 161 and tMP (70). Since analog 169 does not have the carbonyl oxygen 

atom, the hydrogen bond interaction between the oxygen atom and Ser422 was lost. 

Figure 41a. shows the docking of analog 169 (orange) in our hDAT model and the 

hydrogen bond interaction is represented by red broken line and figure 41b. show analog 

169 is a space-filling spheres.  
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Figure 41. a. Analog 169 (orange) docked in our hDAT model and red broken line shows 
interaction between piperidine nitrogen atom and Asp79. b. Analog 169 (orange) shown 
is space-filling spheres.  
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Based on our docking studies, we predicted that analog 169 might be less potent than 

our parent analog 161, since it loses one hydrogen bond interaction with Ser422 due to 

the absence of the carbonyl oxygen atom. Figure 42a shows overlapping structures of 

analog 161 and 169, Figure 42b shows a side view of the overlapping structures. Both 

analogs 161 (forest green) and 169 (orange) were found to have similar poses.  

 

 

Figure 42. a. Overlapping structures of analogs 161 (forest green) and 169 (orange). b. 
showing the side view of the structures.  
 
 

a. 

b. 
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B. HINT analysis  

HINT studies were conducted on the descarbonyl analog 169 using Sybyl 8.1. A high 

positive total HINT score (1508) was obtained indicating that analog 169 had favorable 

interactions with the protein. Table 18 shows the breakdown of favorable and unfavorable 

interactions between analog 169 and our hDAT model.  

 
Table 18. Table showing distribution of favorable (green) and unfavorable (red) HINT 
score for analog 169.  
 
 
Ligand 

Total 
HINT 
score 

 
Favorable score 

 
Unfavorable score 

  Hydrogen 
bond 

Acid/ 
Base 

Hydrophobic Acid/
Acid 

Base/
Base 

Hydrophobic/
Polar 

169 1508   924 784 508 -103     3.2   -610 

161   995 1007 761 482 -108 -329   -817 

tMP 
(70) 

  575 1245 933 441   -79 -912 -1053 

 

 

C. Synthesis 

The synthesis of the descarbonyl analog 169 was straightforward. 2-Benzoylpyridine 

(172) was reduced on a Parr hydrogenator in the presence of 5% Pt/C and AcOH to give 

the alcohol intermediate (i.e., 173). The reaction progress was monitored using TLC  

analysis and no further reduction occurred. A stronger acid was added in order to reduce 

the hydroxy group. Perchloric acid was added in a catalytic amount and the reaction 

mixture was allowed to undergo reduction on the Parr hydrogenator for 72 h, eventually 

giving us our desired product 169 (Scheme 7). 
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Scheme 7a. Synthesis of analog 169.  
 
 
 
 
 
 
 
 
 
 
 
aReagents and conditions: a. AcOH, 5% Pt/C, 30-40 psi, rt, 6h; b. AcOH, HClO4, 5% Pt/C, 
50-55 psi, rt, 72h. 

 

D. APP+ uptake assay 
 
During the synthesis of analog 169, phenyl(2-piperidinyl)methanol (173) was obtained as 

an intermediate. Therefore, we included analog 173 in our functional studies. As 

described in results and discussion of Aim 2, preliminary studies were conducted on 

analogs 169 and 173 at two concentrations (1 and 10 µM). Figure 43 shows the trace 

obtained from the preliminary studies of APP+ uptake studies. From the results obtained 

in the preliminary studies, complete dose-response studies were conducted to obtain IC50 

values. Figure 44 shows the dose-response curves of analogs 169 and 173 and Table 19 

shows their IC50 values.  
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Figure 43. Raw traces of analogs 169 (a, 1 µM) and 173 (b, 1 µM) in the APP+ uptake 
assay using live-cell imaging.  
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Figure 44. Dose-response curves of analogs 169 and 173 in the APP+ uptake assay.  
 
 
 
Table 19. IC50 values of analogs 169, 173 and 161 in APP+ uptake assay. 
 
 
 
 
 
 
 
 
 
 
 
Ligand IC50 (nM) ± S.E.M. pIC50 

169 3780 ± 1200 5.42 

173 7900 ± 2200 5.10 

161             1080 ± 190 5.96 

 
 
As predicted by our docking studies, analog 169 was found to be 3.5-fold less potent than 

the parent analog 161, and this suggests that the carbonyl oxygen atom of the parent 
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the carbonyl group appears to help in improving the potency of these types of analogs. 

On the contrary, analog 173, was found to be a weak DAT reuptake inhibitor in our assay. 

Analog 173, contains two chiral centers and therefore consists of four isomers 

(diastereomers); however, for the present study, we only synthesized the racemic 

mixture. Hence, at this point we cannot predict which isomer is responsible for its activity. 

It might be possible that only one isomer is the active isomer, and due to the presence of 

other inactive isomers, activity appears to be low. In order to know which isomer is 

responsible for activity, we would have to synthesize all the four isomers and evaluate 

their functional activity at DAT.  

 

E. Intracellular Ca2+ determination  

Like other analogs mentioned in Aim 2, we evaluated analog 169 at approximately 10-

times its IC50 value to check for its releasing effects at DAT. Figure 45 shows the trace 

obtained from the Ca2+ assay, DA (10 µM) was used as the substrate. In the assay, 

HEK293 cells were first perfused with the imaging solution (IS) for 10 s, followed by DA 

for 5 s which gives the first peak (Figure 45), the DA is then washed for 30 s and then 

analog 169 was applied for 30 s and no peak was seen. Finally, 169 and DA mixture was 

applied which gave the second peak. Analog 169 acted as a DAT blocker due to the 

reduced intensity of the second peak as compared to the first peak. The peak intensity is 

directly proportional to the number of Ca2+ channels that are open. It can be concluded 

that analog 169 does not have any DAT releasing activity.  
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Figure 45. Graph obtained from the Ca2+ assay for DA (left), analog 169, and analog 

169 in combination with DA (right). 

 
 
F. Discussion  

Previous studies have showed that the ester group of tMP is not required for its binding 

at DAT and it can be replaced by other functional groups such as hydroxylamine, amide 

and methoxymethyl.8 Therefore, in order to understand the importance of the carbonyl 

oxygen atom for the activity of synthetic cathinones, we synthesized descarbonyl analog 

169 and conducted docking and HINT studies using our hDAT models, and evaluated it 

in the APP+ uptake and intracellular Ca2+ assay. It might be noted that 169 was not 

identical to 130 (Table 12) reported earlier.  
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interaction with Ser422 which was seen in the previous two analogs. Due to this loss of a 

hydrogen bond interaction we predicted that analog 169 might be less potent than analog 

161 for its DAT functional activity.  

 

Supporting our docking studies, analog 169 was found to be 3.5-fold less potent than 

analog 161 in APP+ uptake studies. Analog 173 was an intermediate obtained during the 

synthesis of analog 169 and therefore we included it in our APP+ uptake studies. Analog 

173 was found to be 7.3- and 2-fold less potent than analogs 161 and 169, respectively. 

However, analog 173 has two chiral centers and therefore contains four isomers. During 

the synthesis of analog 169, we only obtained a racemic mixture and hence we cannot 

predict that which isomer of analog 173 is responsible for its activity. In order to identify 

the eutomer we will have to synthesize all the four isomers and evaluate them in the APP+ 

uptake assay.  

 

Along with the APP+ uptake assay, analog 169 was also evaluated in an intracellular Ca2+ 

determination assay. Analog 169 did not have a releasing effect at DAT even at 30 µM 

concentration. From our current study we found that the carbonyl oxygen atom is not 

critical for the compound to act as a DAT reuptake inhibitor, however it helps in improving 

the activity of these types of synthetic cathinones.  
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V. Conclusion and future work 

 
 
 
 
A parallel SAR approach using tMP has provided us with important information and 

helped expand our knowledge about the structural features of synthetic cathinones as 

DAT reuptake inhibitors. tMP, apart from being used for the treatment of ADHD in 

children, is a Schedule II drug and it shares some structural similarity with synthetic 

cathinones. Similar to newer synthetic cathinones, tMP primarily acts at DAT as a 

reuptake inhibitor and is widely abused. In our current study we synthesized a series of 

methylphenidate/cathinone hybrid compounds and evaluated their functional activity at 

DAT.  

 

It was found that analogs bearing structural features of MP do not alter the activity of 

related cathinones from being DAT reuptake inhibitors. Previously, our laboratory had 

shown that a bulky amine and/or extended a-side chain changes the activity of synthetic 

cathinones from releasers to reuptake inhibitors at DAT.2 The current research supported 
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our previous findings showing that when the a-side chain of a-PVP was ligated to the 

terminal amine to form a piperidine ring and the methyl ester group of MP is replaced by 

carbonyl group it retained DAT reuptake inhibition activity.  

 

Our docking studies using hDAT homology models suggested that tMP and 2-

benzoylpiperidines might bind at DAT in a similar manner. 2-Benzoylpiperidine analogs 

(161-168) in our series inhibited the APP+ signal in a live-cell imaging assay and did not 

induce depolarization in the Ca2+ assay, indicating that this series of compounds act as 

reuptake inhibitors at DAT. Similar to the tMP series, we also showed that the 3,4-

disubstituted analog (i.e., 168) increases the potency of the hybrid series as DAT 

reuptake inhibitors. A significant correlation (r = 0.91) was obtained between the binding 

affinity of the tMP series and the functional activity of the 2-benzoylpiperidine series. 

These findings suggest that the SAR of tMP might be applicable to novel synthetic 

cathinones (i.e., the 2-benzoylpiperidine series) that are yet to be seen on the market. 

Additionally, it also suggests that our hDAT models were reliable as we were able to 

successfully predict that the 2-benzoylpiperidines would be less potent than tMP in 

functional studies. 

 

We also showed that the carbonyl oxygen atom of 161 is not important for the compound 

to act as a DAT reuptake inhibitor as our descarbonyl analog (2-benzylpiperidine, 169) 

retained activity; however, the carbonyl oxygen atom helps to improve the potency at DAT 

as a reuptake inhibitor. Our homology model was also able to predict that the descarbonyl 

analog would be less potent than 161, due to the loss of a hydrogen bonding feature 
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between the carbonyl oxygen atom and Ser422. This study has provided  valuable insight 

and helped our understanding a complicated puzzle i.e., the SAR of synthetic cathinones 

as reuptake inhibitors.  

 

The next question is whether these hybrid analogs behave similarly in in vivo studies and 

if they have abuse liability or potential therapeutic effects. Data from in vivo studies would 

help us correlate it with our in vitro data and provide additional support to our findings. It 

would also be interesting to know how the 2-benzoylpiperidine series behaves at NET 

and SERT, and also inform us about their selectivity profile among the three transporters. 

tMP is known to act as a NET reuptake inhibitor as well as a DAT reuptake inhibitor and 

therefore it would be fascinating to know if our series also has similar effects at NET. 

Additionally, it would be valuable to synthesize a similar series of benzoylpipridines with 

2- and 3-substituents and conduct parallel SAR studies with the tMP series. In the tMP 

series, substitution at 2-position was not tolerated and substitution at the 3-position was 

found to result in compounds approximately equipotent to the 4-substituted analogs.9 It 

would be interesting to see if the hybrid analogs with substituents at the 2- and 3-position 

follow the same trend or not. If so, we would be able to say, with greater confidence that 

the SAR of tMP is be applicable to synthetic cathinones.  
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VI. Experimental  

 
 
 

A. Molecular modeling studies and HINT analysis 

1. Homology modeling  

Sequence of the template dDAT (PDB ID: 4XP4) was retrieved as FASTA files from the 

Protein Databank (PDB). Prior to the alignment the sequence was prepared be removal 

of water molecules, ligands and surfactants. Three-dimensional homology models of 

hDAT was prepared using MODELLER 9.10 (University of California San Francisco, San 

Francisco, CA) using dDAT as the template and the models were validated by docking 

cocaine.  

 

2. Docking studies 

The ligands were sketched in SybylX 2.1.1 (Tripos International) and energy minimized 

using Gasteiger-Hückel charges (dielectric constant = 4.0). Docking studies were 

conducted using GOLD suite 5.6.1 (Cambridge Crystallographic Data Centre, 

Cambridge, UK), and GOLD score was chosen as the scoring function. The binding 

pocket was defined as a spherical region of radius of 5 Å using Asp79 of hDAT. All the 

docking poses were clustered on the basis of similarity of poses within a RMSD of 1 Å. 

The clusters were visually inspected using SybylX 2.1.1 (Tripos International) and the 
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best fitting pose was merged with the model. The ligand-transporter complex were 

energy minimized using Tripos Force Field (Gasteiger- Hückel charges, dielectric 

constant = 4.0).  

 

3. HINT analysis 

The ligand-transporter complex was scored using HINT (Hydropathic INTeraction) in 

Sybyl 8.1 in order to quantify the interactions observed in the modeling studies. The logP 

of ligands were calculated using the calculate option, whereas hDAT was calculated using 

the dictionary option with the default settings. The atom-based breakdown of HINT score 

was analyzed to determine the contributions of favorable and unfavorable interactions of 

the individual atoms to the interactions with the amino acid residues at the binding region 

of hDAT. The favorable interactions comprised of hydrogen bond, acid/base, and 

hydrophobic interactions, whereas unfavorable interactions comprised of acid/acid, 

base/base, and hydrophobic/polar interactions.  
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B. Synthesis 

Melting points were measured with a Thomas-Hoover or MEL TEMP (for compounds with 

mp >200 °C) apparatus using glass capillaries. Compounds were characterized by 1H 

NMR, mass spectrometry (MS), and IR spectroscopy. 1H NMR spectra were recorded 

using a Bruker AXR 400 MHz spectrometer using tetramethylsilane (TMS) as an internal 

standard. The spectra were reported by their peak position in parts per million (ppm) 

downfield from TMS, and their splitting pattern (s = singlet, d = doublet, t = triplet, q = 

quartet, dd = doublet of doublets, m = multiplet), coupling constant (J, Hz) and integration. 

IR spectra were recorded using a Thermo Nicolet iS10 FT-IR, and MS were recorded 

using a Waters Acquity tandem quadrupole (TQD) instrument with electrospray ionization. 

Reactions were routinely monitored by thin-layer chromatography (TLC) using silica gel 

GHLF plates (250 mm, 2.5 x 10 cm; Analtech Inc. Newark, DE), and flash chromatography 

was performed on a CombiFlash Companion/TS (Teledyne Isco Inc. Lincoln, NE). All final 

compounds were prepared as water-soluble hydrochloride salts. The purity of the novel 

compounds was determined by elemental analysis for C, H and N (Atlantic Micolab Inc.; 

Norcross, GA) and the results were within 0.4% of the calculated values. The AlCl3 was 

freshly sublimed for every reaction. 
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2-Benzoylpiperidine Hydrochloride (161) 

Jones reagent (1.78 mL, 4.47 mmol), prepared from chromium(VI) oxide (2.50 g) and 

concentrated H2SO4 (2.50 mL), and H2O (7.50 mL) was added in a dropwise manner to 

a solution of phenyl(2-piperidinyl)methanol (173) in a mixture of acetone (10 mL) and H2O 

(2 mL) at 0 °C. The reaction mixture was allowed to stir at 0 °C for 1 h and then at room 

temperature for 18 h. The reaction mixture was basified by addition of a saturated solution 

of NaHCO3 (tp pH = ~8). The aqueous portion was extracted with EtOAc (3 x 30 mL) and 

the combined organic portion was dried (Na2SO4), filtered, and then evaporated to 

dryness under reduced pressure to yield a yellow solid. The solid was dissolved in Et2O 

and HCl gas was allowed to slowly bubble through the solution yielding a white solid. The 

solid was collected by filtration and recrystallized from i-PrOH to yield 0.11 g (16%) of 161 

as a white solid: mp 220-221 °C (lit.146 mp 225-227 °C). IR (diamond, cm-1): 1685 (C=O). 

1H NMR (DMSO-d6) d: 1.44-1.47 (m, 1H, CH), 1.50-1.77 (m, 4H, 2 X CH2), 1.99-2.18 (m, 

1H, CH), 2.34-2.40 (m, 1H, CH), 3.18-3.24 (m, 1H, CH), 4.92-5.12 (m, 1H, CH), 7.59 (t, 

2H, J = 7.9 Hz, Ar-H), 7.72 (m, 1H, J = 8.5 Hz, Ar-H), 8.05 (dd, J = 7.0 Hz, 2H, ArH), 9.98 

(br s, 2H, NH+). 
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2-(4-Methylbenzoyl)piperidine Hydrochloride (162) 

In a 2-neck flask, PCl3 (1.31 g, 9.59 mmol) was added to a solution of N-Boc-dl-pipecolic 

acid (174) (2 g, 8.72 mmol) in anhydrous toluene (50 mL) under an N2 atmosphere and 

the reaction mixture was allowed to stir for 2 h at 60 °C. Aluminum trichloride (3.48 g, 

26.16 mmol) was added portionwise at 0 °C and the mixture was allowed to stir at room 

temperature overnight. The reaction mixture was quenched by careful pouring into ice-

cold H2O (50 mL) and extracted with EtOAc (50 mL). The aqueous portion was basified 

with NaOH (3 M, to pH 12), and extracted with EtOAc (3 x 50 mL). The combined organic 

portion was dried (Na2SO4), filtered, and the filtrate evaporated to dryness under reduced 

pressure to yield a yellow oil. The oily residue was dissolved in Et2O and converted to its 

HCl salt by the addition of a saturated solution of HCl(g) in Et2O. The solid material was 

collected by filtration and recrystallized from EtOH/Et2O to give 0.49 g (23%) of compound 

162 as a white solid: mp 258-261 °C. 1H NMR (DMSO-d6) d: 1.29-1.55 (m, 1H, CH), 1.56-

1.90 (m, 4H, 2 X CH2), 1.95-2.20 (m, 1H, CH), 2.42 (s, 3H, CH3), 2.79-3.10 (m, 1H, CH), 

3.27-3.51 (m, 1H, CH), 4.79-5.27 (m, 1H, CH), 7.43 (d, 2H, J = 8.0 Hz, Ar-H), 7.96 (d, 2H, 

J = 8.2 Hz, Ar-H), 8.87 (br s, 1H, NH), 9.36 (br s, 1H, NH+); IR (diamond, cm-1): 1677 

(C=O), 3453 (NH); Anal. Calcd (C13H17NO . HCl . 0.1 H2O) C, 64.64; H, 7.59; N, 5.79. 

Found C, 64.61; H, 7.60; N, 5.84. 
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2-(4-Ethylbenzoyl)piperidine Hydrochloride (163) 

In a 2-neck flask, PCl3 (0.50 g, 2.18 mmol) was added to a solution of N-Boc-dl-pipecolinic 

acid (0.32 g, 2.39 mmol) in anhydrous ethylbenzene (50 mL) under an N2 atmosphere 

and the reaction mixture was allowed to stir for 2 h at 60 °C. Freshly sublimed AlCl3 (0.87 

g, 6.54 mmol) was added portionwise to the reaction mixture at 0 °C and the mixture was 

allowed to stir at room temperature overnight. The reaction mixture was quenched by 

careful pouring into ice-cold H2O (50 mL) and extracted with EtOAc (50 mL). The aqueous 

portion was basified with NaOH (3 M, to pH 12), and extracted with EtOAc (3 x 50 mL). 

The combined organic portion was dried (Na2SO4), filtered, and then evaporated to 

dryness under reduced pressure to yield a yellow oil. The oily residue was dissolved in 

Et2O and converted to its HCl salt by adding a saturated solution of HCl (g) in Et2O. The 

solid obtained was collected by filtration and dried to give 0.35 g of a crude white solid 

that was recrystallized from i-PrOH to give 0.08 g (14%) of 163 as a white solid: mp 238-

240 °C; 1H NMR (DMSO-d6) δ: 1.07-1.12 (m, 3H, CH3), 1.20-1.23 (m, 2H, CH2), 1.45-1.47 

(m, 1H, CH), 1.49-1.77 (m, 4H, 2 X CH2), 2.08-2.12 (m, 1H, CH), 2.96-2.99 (m, 2H, CH2), 

5.05-5.11 (m, 1H, CH), 7.46 (d, 2H, J = 8.6 Hz, Ar-H), 7.98 (d, 2H, J = 8.2 Hz, Ar-H), 8.87 

(br s, 1H, NH), 9.37 (br s, 1H, NH+); IR (diamond, cm-1) 1668 (C=O), 3026 (NH); Anal. 

Calcd for (C14H19NO . HCl . 0.1 H2O) C, 66.26; H, 7.94; N, 5.52. Found: C, 65.07; H, 7.87; 

N, 5.63. 
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2-(4-Chlorobenzoyl)piperidine Hydrochloride (164) 

2-(4-Chlorobenzoyl)piperidine-1-carbaldehyde (176) in EtOH (2 mL) and HCl (3 N, 2 mL) 

was heated at reflux for 3 h, cooled to room temperature, and the solution was evaporated 

to dryness under reduced pressure to give 0.26 g (21%) of a crude white solid which was 

recrystallized from i-PrOH to give 0.03 g (11%) of compound 164 as a white solid: mp 

282-284 °C. 1H NMR (CDCl3) d: 1.33-1.38 (m, 1H, CH), 1.89-2.07 (m, 4H, 2 X CH2), 2.48-

2.54 (m, 1H, CH), 3.06-3.17 (m, 1H, CH), 3.60-3.51 (m, 1H, CH), 4.88-4.78 (m, 1H, CH), 

7.38 (d, 2H, J = 8.1 Hz, Ar-H), 7.79 (d, 2H, J = 8.1 Hz, Ar-H), 9.20 (br s, 1H, NH), 10.54 

(br s, 1H, NH+); IR (diamond, cm-1): 1681 (C=O); Anal. Calcd for (C12H14ClNO . HCl) C, 

55.40; H, 5.81; N, 5.38. Found: C, 55.10; H, 5.91; N, 5.42. 

 

 

2-(4-Bromobenzoyl)piperidine Hydrochloride (165) 

2-(4-Bromobenzoyl)piperidine-1-carbaldehyde (177) was heated at reflux in EtOH (2 mL) 

and HCl (3 N, 2 mL ) for 3 h, cooled to room temperature and the solution evaporated to 

dryness under reduced pressure to give a crude white solid which was recrystallized from 

i-PrOH to give 0.12 g (13%) of compound 165 as a white solid: mp 250-252 °C. 1H NMR 

(DMSO-d6) d: 1.06-2.03 (m, 4H, 2 X CH2), 2.18-2.39 (m, 2H, CH), 3.01-3.21 (m, 1H, CH), 

3.43-3.60 (m, 1H, CH), 4.85-5.95 (m, 1H, CH), 7.74 (d, 2H, J = 7.0 Hz, Ar-H), 7.88 (d, 2H, 

J = 7.8 Hz, Ar-H), 8.76 (br s, 1H, NH), 9.45 (br s, 1H, NH+); IR (diamond, cm-1): 1678 

(C=O), 3456 (NH); Anal. Calcd for (C12H14BrNO . HCl ) C, 47.31; H, 4.96; N, 4.59. Found: 

C, 47.52; H, 5.08; N, 4.60.  
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2-(4-Methoxybenzoyl)piperidine Hydrochloride (166) 

In a 3-neck flask, a solution of tert-butyl 2-(methoxy(methyl)carbamoyl)piperidine-1-

carboxylate (178) (0.80 g, 2.93 mmol) in anhydrous ether (10 mL) was brought to -23 °C 

under an N2 atmosphere, and intermediate 4-(methoxyphenyl)lithium (182) was added 

dropwise via syringe over 15 min. The reaction mixture was allowed to stir at -23 °C for 3 

h, warmed to room temperature, and quenched by carefully pouring into an ice-cold 

solution of 1M KH2PO4 (30 mL). The aqueous layer was extracted with EtOAc (3 x 30 mL) 

and the combined organic portion was dried (Na2SO4), filtered, and then evaporated to 

dryness under reduced pressure to yield a crude residue which was purified by column 

chromatography (silica gel; hexane/EtOAc; 10:0 to 2:8) to afford a yellow oil. The oily 

residue was stirred in methanolic HCl overnight and evaporated to dryness to yield a 

yellow solid which upon which upon recrystallization from i-PrOH yielded 0.03 g (3%) of 

compound 166 as a white solid: mp 218-220 °C. 1H NMR (DMSO-d6) d: 1.03-1.05 (m, 1H, 

CH), 1.41-1.49 (m, 4H, 2 X CH2), 1.78-1.76 (m, 1H, CH), 2.95-2.97 (m, 1H, CH), 3.81-

3.89 (m, 1H, CH), 5.03-5.07 (m, 1H, CH), 7.12-7.14 (d, 2H, J = 6.7 Hz, Ar-H), 8.03-8.05 

(d, 2H, J = 8.8 Hz, Ar-H), 9.01 (br s, 1H, NH), 9.37 (br s, 1H, NH+); IR (diamond, cm-1): 

1677 (C=O); Anal. Calcd (C13H17NO2 . HCl . 0.2 H2O) C, 61.05; H, 7.09; N, 5.48. Found: 

C, 59.81; H, 6.76; N, 5.34. 
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2-(4-Trifluoromethylbenzoyl)piperidine Hydrochloride (167) 

In a 3-neck flask, a solution of tert-butyl 2-(methoxy(methyl)carbamoyl)piperidine-1-

carboxylate (178) (0.39 g, 1.32 mmol) in anhydrous ether (5 mL) was brought to -23 °C 

under an N2 atmosphere, and intermediate 4-(trifluoromethylphenyl)lithium (183) was 

added dropwise via syringe over 15 min.  The reaction mixture was allowed to stir at -23 

°C for 3 h, warmed to room temperature, and quenched by carefully pouring into an ice-

cold solution of 1M KH2PO4 (20 mL). The aqueous layer was separated and extracted 

with EtOAc (3 x 30 mL) and the combined organic portion was dried (Na2SO4), filtered, 

and then evaporated to dryness under reduced pressure to yield a crude residue which 

was purified by column chromatography (silica gel; hexane/EtOAc; 10:0 to 2:8) to afford 

a yellow oil. The oily residue was stirred in methanolic HCl overnight and evaporated to 

dryness to yield a yellow solid which, upon recrystallization from i-PrOH yielded, 0.12 g 

(26%) of compound 167 as a white solid: mp 273-275 °C. 1H NMR (DMSO-d6) d: 1.03-

1.05 (m, 1H, CH), 1.48-1.51 (m, 4H, 2 X CH2), 1.71-1.73 (m, 1H, CH), 1.81-2.12 (m, 1H, 

CH), 3.76-3.79 (m, 1H, CH), 5.19-5.22 (m, 1H, CH), 7.99-8.01 (d, 2H, J = 8.0 Hz, Ar-H), 

8.25-8.27 (d, 2H, J = 8.2 Hz, Ar-H), 9.02 (br s, 1H, NH), 9.54 (br s, 1H, NH+); IR (diamond, 

cm-1): 1689 (C=O); Anal. Calcd (C13H14F3NO . HCl) C, 53.16; H, 5.15; N, 4.77. Found: C, 

53.25; H, 5.22; N, 4.78. 
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2-(3,4-Dichlorobenzoyl)piperidine Hydrochloride (168) 

In a 3-neck flask, a solution of tert-butyl 2-(methoxy(methyl)carbamoyl)piperidine-1-

carboxylate (178) (0.34 g, 1.26 mmol) in anhydrous ether (5 mL) was brought to -23 °C 

under an N2 atmosphere, and intermediate 3,4-(dichlorophenyl)lithium (184) was added 

dropwise via syringe over 15 min. The reaction mixture was allowed to stir at -23 °C for 3 

h, warmed to room temperature, and quenched by carefully pouring in ice-cold solution 

of 1M KH2PO4 (20 mL). The aqueous layer was extracted with EtOAc (3 x 30 mL) and the 

combined organic portion was dried (Na2SO4), filtered, and then evaporated to dryness 

under reduced pressure to yield a crude residue which was purified by column 

chromatography (silica gel; hexane/EtOAc; 10:0 to 2:8) to afford a yellow oil. The oily 

residue was stirred in methanolic HCl overnight and evaporated to dryness to yield a 

yellow solid which upon recrystallization from i-PrOH yielded 0.02 g (13%) of compound 

168 as a beige solid: mp 273-275 °C. 1H NMR (DMSO-d6) d: 1.05-1.09 (m, 1H, CH), 1.50-

1.55 (m, 4H, 2 X CH2), 1.71-1.75 (m, 1H, CH), 1.89-2.10 (m, 1H, CH), 3.71-3.78 (m, 1H, 

CH), 5.25-5.28 (m, 1H, CH), 7.85-7.88 (d, 1H, J = 7.7 Hz, Ar-H), 7.91-7.95 (d, 1H, J = 7.9 

Hz, Ar-H), 8.30 (s, 1H, Ar-H), 9.02 (br s, 1H, NH), 9.54 (br s, 1H, NH+); IR (diamond, cm-

1): 1683 (C=O); HRMS (ESI-TOF) m/z: [M + H]+ calcd for C12H14Cl2NO, 258.0448; found, 

258.0452. 
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2-Benzylpiperidine Hydrochloride (169) 

To a solution of phenyl (2-piperidinyl)methanol (173) (0.88 g, 4.68 mmol) in AcOH (40 

mL) and perchloric acid (2 mL), 5% Pt/C (0.35 g) was added. The mixture was treated 

with H2 gas on a Parr hydrogenator at 50-55 psi for 72 h. The reaction mixture was filtered 

through Celite and evaporated to dryness to yield a yellow oil. The oily residue was 

basified with NaOH (3M, to pH ~ 12) and extracted with methylene chloride (3 x 50 mL). 

The combined organic portion was dried (Na2SO4) and evaporated to dryness under 

reduced pressure to yield a white solid. The solid was dissolved in Et2O and HCl gas was 

allowed to slowly bubble through the solution yielding a white solid. The solid obtained 

was filtered and dried to give a solid which upon recrystallization from i-PrOH yielded 0.45 

g (45%) of compound 169 as a white solid: mp 135-136 °C (lit.126 mp 130-135 °C). 1H 

NMR (DMSO-d6) d: 1.08-1.85 (m, 6H, 3 x CH2), 2.36-2.83 (m, 4H, 2 X CH2), 3.27-3.34 

(m, 1H, CH), 7.14 (t, 2H, J = 6.0 Hz, Ar-H), 7.20 (m, 1H, J = 7.2 Hz, Ar-H), 7.37 (dd, J = 

8.5 Hz, 2H, ArH). Note: This compound was different than that (i.e., 130 Table 12) 

previously reported.125 

 

Piperidine-2-carbonyl chloride Hydrochloride (171) 

Pipecolic acid (170) (1 g, 7.74 mmol) was added to a suspension of PCl5 (1.62 g, 7.74 

mmol) in anhydrous CH2Cl2 (20 mL) at 0 °C under an N2 atmosphere. The reaction mixture 

was allowed to warm to room temperature and stirred for 3 h. The solvent was evaporated 

under reduced pressure and further dried under high vacuum to yield 1.02 g of compound 

171 as a white solid: mp 130-132 °C (lit.147 mp 130 °C). IR (diamond, cm-1): 1770 (C=O).  
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Phenyl (2-piperidinyl)methanol (173) 

Pt/C (5%, 0.32 g) was added to a solution of 2-benzoylpyridine (1 g, 5.45 mmol) in AcOH 

(50 mL). The mixture was treated with H2 gas in a Parr hydrogenator at 30-40 psi for 6 h. 

The reaction mixture was filtered through Celite and the filtrate was evaporated to dryness 

to yield a yellow oil. The oily residue was basified with NaOH (3M, to pH ~ 12) and 

extracted with methylene chloride (3 x 50 mL). The combined organic portion was dried 

(Na2SO4), filtered, and the filtrate evaporated to dryness under reduced pressure to yield 

a white solid which upon recrystallization with i-PrOH yielded 0.83 g (80%) of compound 

173 as a white solid: mp 135-136 °C (lit.148 mp 137 °C); 1H NMR (DMSO-d6) δ: 1.40-1.48 

(m, 1H, CH), 1.56-1.81 (m, 4H, 2 X CH2), 1.91-2.23 (m, 2H, CH2), 2.39-2.81 (m, 1H, CH), 

3.27-3.34 (m, 1H, CH), 4.71-4.92 (m, 2H, CH2), 7.49 (t, 2H, J = 8.1 Hz, Ar-H), 7.54 (m, 

1H, J = 7.5 Hz, Ar-H), 8.1 (dd, J = 7.0 Hz, 2H, ArH); IR (diamond, cm-1) 3267 (OH).  

 

N-Formyl pipecolic acid (175) 

Acetic anhydride (5 mL) was added in a dropwise manner at 0 °C (ice-bath) to a stirred 

solution of pipecolic acid (1 g, 7.75 mmol) in HCOOH (10 mL). The reaction mixture was 

allowed to stir at room temperature for 1 h and quenched by careful addition of distilled 

H2O (10 mL). The solvent was evaporated to dryness under reduced pressure to yield a 

crude white solid which upon recrystallization from 95% EtOH  yielded 0.73 g (57%) of 

compound 175 as a white solid; mp 84-86 °C (lit.149 mp 85-87 °C); IR (diamond, cm-1) 

1621 (C=O). Compound 175 was prepared according to the literature procedure as 

reported by Pizzorno and Albonico.149 
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2-(4-Chlorobenzoyl)piperidine-1-carbaldehyde (176) 

In a 3-neck flask, PCl3 (0.69 g, 5.03 mmol) was added to a solution of N-formyl pipecolic 

acid149 (175) (0.71 g, 4.57 mmol) in anhydrous chlorobenzene (50 mL) under an N2 

atmosphere and the reaction mixture was allowed to stir for 2 h at 60 °C. Aluminum 

trichloride (1.82 g, 13.72 mmol) was added portionwise at 0 °C and the reaction mixture 

was allowed to stir at room temperature overnight. The reaction mixture was quenched 

by carefully pouring in ice-cold H2O (50 mL) and washed with EtOAc. The aqueous portion 

was basified with NaOH (3 M, to pH 12) and extracted with CH2Cl2 (3 x 50 mL). The 

combined organic portion was washed with brine (30 mL), dried (Na2SO4), filtered, and 

then evaporated to dryness under reduced pressure to yield a crude residue which was 

purified by column chromatography (silica gel; hexane/EtOAc; 10:0 to 5:5) to afford 0.25 

g (21%) of compound 176 as a yellow oil; 1H NMR (CDCl3) d: 1.20-1.90 (m, 4H, 2 X CH2), 

1.94-2.07 (m, 2H, CH2), 3.15-3.25 (m, 1H, CH), 3.59-3.70 (m, 1H, CH), 5.70-5.80 (m, 1H, 

CH), 7.61 (d, 2H, J = 2.0 Hz, Ar-H), 7.94 (d, 2H, J = 4.8 Hz, Ar-H), 8.1 (s, 1H, H); IR 

(diamond, cm-1): 1660 (C=O). 

 

2-(4-Bromobenzoyl)piperidine-1-carbaldehyde (177) 

In a 3-neck flask, PCl3 (0.61 g, 4.51 mmol) was added to a solution of N-formyl pipecolic 

acid149 (175) (0.64 g, 4.10 mmol) in bromobenzene (50 mL) under an N2 atmosphere and 

the reaction was stirred for 2 h at 60 °C. Aluminum trichloride (1.64 g, 12.30 mmol) was 

added portionwise to the reaction mixture at 0 °C and the reaction mixture was allowed 

to stir at room temperature overnight. The reaction mixture was quenched by careful 

pouring in ice-cold H2O (50 mL) and washed with EtOAc (50 mL). The aqueous portion 
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was basified with NaOH (3 M, to pH 12), and extracted with CH2Cl2 (3 x 50 mL). The 

combined organic portion was washed with brine (30 mL), dried (Na2SO4), filtered and 

then evaporated to dryness under reduced pressure to yield compound 177 as a yellow 

oil. The formyl group of compound 177 was deprotected without further analysis.  

 

tert-Butyl 2-(methoxy(methyl)carbamoyl)piperidine-1-carboxylate (178) 

In a 3-neck flask, N,O-dimethylhydroxylamine hydrochloride (0.50 g, 5.19 mmol) and TEA 

(1.55 g, 15.30 mmol) were added to a stirred solution of N-Boc-dl-pipecolinic acid (174) 

(1 g, 4.36 mmol) under an N2 atmosphere. To this mixture BOP (2.10 g, 4.74 mmol) was 

added and the reaction mixture was allowed to stir for 6 h at room temperature. The 

reaction mixture was diluted with methelene chloride (50 mL) and extracted with 1M HCl 

(1 x 30 mL). The organic portion was washed with NaHCO3, brine, and H2O, dried 

(Na2SO4), filtered, and evaporated to dryness under reduced pressure and the crude 

residue was purified by column chromatography (silica gel; hexane/EtOAc; 10:0 to 7:3) 

to yield 0.90 g (82%) of 178 as white solid: mp 64-66 °C (lit mp150 66-68 °C). Compound 

178 was prepared using the literature procedure as described by Thai et al.;142 however, 

they reported 178 as a colorless oil. 

 

4-(Methoxyphenyl)lithium (182) 

In a 3-neck flask, 4-bromoanisole (0.54 g, 2.93 mmol) was allowed to stirred in anhydrous 

Et2O (5 mL) at -78 °C under an N2 atmosphere. To the reaction mixture, a 2.5 M solution 

of n-BuLi in hexane (2.33 mL, 5.84 mmol) was carefully added in a dropwise manner. The 

reaction mixture was warmed to -40 °C and allowed to stir for 3 h. The intermediate, 
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although unreported, was synthesized according to a literature procedure for a similar 

compound.151 The intermediate, 182, was used for the next step without characterization 

for the preparation of 166.  

 

4-(Trifluoremethylphenyl)lithium (183) 

In a 3-neck flask, 4-bromotrifluoromethylbenzene (0.29 g, 1.32 mmol) was allowed to stir 

in anhydrous Et2O (5 mL) at -78 °C under an N2 atmosphere. To the reaction mixture, a 

2.5 M solution of n-BuLi in hexane (1.05 mL, 2.64 mmol) was carefully added in a 

dropwise manner. The reaction mixture was warmed to -40 °C and stirred for 3 h. The 

intermediate, although unreported, was synthesized according to a literature procedure 

for a similar compound.151 The intermediate, 183, was used for the next step without 

characterization for the preparation of 167.  

 

3,4-(Dichlorophenyl)lithium (184) 

In a 3-neck flask, 1-bromo-3,4-dichlorobenzene (0.34 g, 1.52 mmol) was allowed to stir 

in anhydrous Et2O (5 mL) at -78 °C under an N2 atmosphere. To the reaction mixture, a 

2.5 M solution of n-BuLi in hexane (1.21 mL, 3.04 mmol) was carefully added in a 

dropwise manner. The reaction mixture was warmed to -40 °C and stirred for 3 h. The 

intermediate was synthesized according to a literature procedure.151 The intermediate, 

184, was used for the next step without characterization for the preparation of 168.  
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C. APP+ uptake assay 

1. Preparation of HEK293 cells 

A stable cell line expressing the hDAT was developed previously in the laboratory as 

described by Cameron et al.152 Cells were prepared in Dulbecco’s modified Eagle’s 

medium (DMEM) supplemented with 10% fetal bovine serum. The cells were plated on 

96-well plates and were transfected with red fluorescent protein (DsRed, TaKaRa Bio 

USA, Mountain View, CA) which is a coding plasmid and helps to focus cells in the 

fluorescence microscope before the addition of APP+. Doxycycline (1mg/mL) was added 

to the culturing media 3 days before the experiment to induce expression of DAT.  

 

 
2. Solution for the experiment 

Imaging solution (IS) was prepared and was used to dissolve all the analogs and as a 

vehicle. It consisted of NaCl (130 mM), KCl (4 mM), CaCl2 (2 mM), MgCl2 (1 mM), Hepes 

(10 mM), and glucose (10 mM). The pH of the IS was adjusted between 7.3-7.4 using a 

saturated solution of NaOH.   

 

3. Drugs 

Cocaine and threo-methylphenidate were purchased as their hydrochloride salts from 

Sigma-Aldrich, St. Louis, MO.  
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4. Live-cell imaging  

The cells were placed on the stage of the epifluorescent microscope (Olympus IX70) 

equipped with a light source Polycrome V (Till Photonics, Gräfelfing, Germany), a Luca S 

digital camera (Andor Technology, Belfast, UK), and an automated perfusion system. The 

imaging system was coordinated using the Live Acquisition Software from Till Photonics. 

The entire experiment was done at room temperature. The DsRed signal of transfected 

cells were used to find the focal plane of the cell monolayer. The wavelength of 460 nm 

was used to detect the APP+ for excitation and 540 nm for emission.  

 

The experiment consisted of three phases over 70 seconds and was under constant 

perfusion. The cells were exposed with the IS for 10 seconds followed by the compound 

of interest for 30 seconds and finally compound of interest + APP+ (3 µM) for 30 seconds. 

All the hybrid analogs were evaluated at six different concentrations in order to get a 

complete dose-response curve.  

 

5. Analysis 

The data obtained from the APP+ were analyzed using Fiji ImageJ Version 2.0 and the 

dose-response curves were plotted using GraphPad Prism 8.0.  
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D. Intracellular Ca2+ determination  

1. Preparation of HEK293 cells  

A stable cell lines expressing hDAT was previously developed in the laboratory as 

described by Cameron et al.152 and cells were plated in 96-well imaging plates. The 

HEK293 cells were cotransfected with voltage-gated Ca2+ with plasmids coding a1.2, b3, 

a2d, and enhanced green fluorescent protein (EGFP) using FuGENE (Promega, Madison, 

WI).  

 

2. Solution for the experiment 

IS was prepared and was used to dissolve all the analogs and as a vehicle. It consisted 

of NaCl (130 mM), KCl (4 mM), CaCl2 (2 mM), MgCl2 (1 mM), Hepes (10 mM), and 

glucose (10 mM). The pH of the IS was adjusted between 7.3-7.4 using a saturated 

solution of NaOH.   

 

3. Live-cell imaging  

Ca2+-sensitive dye Fura2 (Life Technologies) was dissolved in DMSO pluronic F-127 20% 

and diluted with IS to final concentration of 3 µM. HEK293 cells were loaded with Fura2 

for 40 minutes at 37 °C and then washed twice with IS. The cells were then placed on the 

stage of the epifluorescence microscope. The setup is similar as described in APP+ 

assay. The measurements were done under constant perfusion at 34 °C using a 

ThermoClamp-1 heater (AutoMate Scientific, Berkeley, CA). The Fura2 signal was 

measured using the exciting wavelength of 340 and 380 nm and the emission wavelength 

used was 520 nm.  
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The experiment was performed in four phases over 110 seconds. First, the cells 

transfected with EGFP were identified and the baseline of Fura2 signal was recorded for 

10 seconds using IS. Next the cells were exposed to DA (10 µM) for five seconds followed 

by 30 seconds of washing with IS. Third, a single concentration (10-times the IC50) of our 

compound of interest was perfused for 30 seconds and lastly a mixture of compound and 

DA (10 µM) was applied for five seconds followed by a final wash with IS.  

 

4. Analysis 

All the signals were background subtracted and the graphs were plotted using GraphPad 

Prism 8.0.  
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